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Preface 
This document provides a comprehensive description of LSODE, a solver for 

initial value problems in ordinary differential equation systems. It is intended to 
bring together numerous materials documenting various aspects of LSODE, 
including technical reports on the methods used, published papers on LSODE, 
usage documentation contained within the LSODE source, and unpublished notes 
on algorithmic details. 

The three central chapters-n methods, code description, and code usage-are 
largely independent. Thus, for example, we intend that readers who are familiar 
with the solution methods and interested in how they are implemented in LSODE 
can read the Introduction and then chapter 3, Description of Code, without 
reading chapter 2, Description and Implementation of Methods. Similarly, those 
interested solely in how to use the code need read only the Introduction and then 
chapter 4, Description of Code Usage. In this case chapter 5, Example Problem, 
which illustrates code usage by means of a simple, stiff chemical kinetics problem, 
supplements chapter 4 and may be of further assistance. 

Although this document is intended mainly for users of LSODE, it can be used 
as supplementary reading material for graduate and advanced undergraduate 
courses on numerical methods. Engineers and scientists who use numerical 
solution methods for ordinary differential equations may also benefit from this 
document. 
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Chapter 1 
Introduction 

This report describes a FORTRAN subroutine package, LSODE, the Livermore 
Solver for Ordinary Differential Equations, written by Hindmarsh (refs. 1 and 2), 
and the methods included therein for the numerical solution of the initial value 
problem for a system of first-order ordinary differential equations (ODE'S). Such 
a problem can be written as 

1 ~$5,~) = yo = Given, 

where - y, -0 Y , - 9, and f are column vectors with N (2 1) components and 5 is the 
independent variable, for example, time or distance. In component form equa- 
tion (1. l) may be written as 

i = 1, ..., N. (12) 

I y j ( e 0 )  = yj,o = Given 

The initial value problem is to find the solution function y at one or more values 
of 5 in a prescribed integration interval [ h b n d ] ,  where thi  initial value of 1, yo, 
at 6 = is given. The endpoint, Lnd,  may not be known in advance as, for 
example, when asymptotic values of y as 5 + 00 are required. 

Initial value, first-order ODE'S arise in many fields, such as chemical kinetics, 
biology, electric network analysis, and control theory. It is assumed that the 
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1. Introduction 

problem is well posed and possesses a solution that is unique in the interval of 
interest. Solution existence and uniqueness are guaranteed if, in the region of 
interest, f is defined and continuous and for any two vectors y and y* in that 
region there exists a positive constant 9 such that (refs. 3 and 4)- 

- 

which is known as a Lipschitz condition. Here 11-11 denotes a vector norm (e.g., 
ref. 5),  and the constant 9 is known as a Lipschitz constant off with respect to y . 

The right-hand side f of the ODE system must be a function of y and 5 only. Tt 
cannot therefore involve y at previous 5 values, as in delay or retGded ODE’s or 
integrodifferential equations. It cannot also involve random variables, as in 
stochastic differential equations. A second- or higher-order ODE system must be 
reduced to a first-order ODE system. 

The solution methods included in LSODE replace the ODE’s with difference 
equations and then solve them step by step. Starting with the initial conditions at 
50, approximations L(= YiPm i = 1, ...,N) to the exact solution y(Cn) [= y,(cn), 
i = 1, ...,Nl of the ODE’s are generated at the discrete mesh points& (n = 1,2, ...), 
which are themselves determined by the package. The spacing between any two 
mesh points is called the step size or step length and is denoted by h,, where 

An important feature of LSODE is its capability of solving ‘‘stiff’ ODE problems. 
For reasons discussed by Shampine (ref. 6 )  stiffness does not have a simple 
definition involving only the mathematical problem, equation (1.1). However, 
Shampine and Gear (ref. 7) discuss some fundamental issues related to stiffness 
and how it arises. An approximate description of a stiff ODE system is that it 
contains both very rapidly and very slowly decaying terms. Also, a characteristic 
of such a system is that the NxN Jacobian matrix J (= af/dy), with element .Il, 
defined as 

- 

J-. = ah/ayj. i , j  = 1 ,..., N ,  
I/ 

has eigenvalues {hi} with real parts that are predominantly negative and also vary 
widely in magnitude. Now the solution varies locally as a linear combination of 
the exponentials { ecRe(’,)}, which all decay if all Re& ) < 0, where Re&) is the 
real part of h,. Hence for sufficiently large 5 (> l/maxlRe(hi)l, where the bars 1.1 
denote absolute value), the terms with the largest Re&) will have decayed to 
insignificantly small levels while others are still active, and the problem would be 
classified as stiff. If, on the other hand, the integration interval is limited to 
l/maxlRe(hi)l, the problem would not be considered stiff. 
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1. Introduction 

In this discussion we have assumed that all eigenvalues have negative real 
parts. Some of the Re&) may be nonnegative, so that some solution components 
are nondecaying. However, the problem is still considered stiff if no eigenvalue 
has a real part that is both positive and large in magnitude and at least one 
eigenvalue has a real part that is both negative and large in magnitude (ref. 7). 
Because the {hi} are, in general, not constant, the property of stiffness is local in 
that a problem may be stiff in some intervals and not in others. It is also relative in 
the sense that one problem may be more stiff than another. A quantitative 
measure of stiffness is usually given by the stifmess ratio max[-Re(hi)]/min 
[-Re&)]. This measure is also local for the reason given previously. Another 
standard measure for stiffness is the quantity max[-Re(&)l[&,d - 501. This 
measure is more relevant than the previous one when Isend - $01 is a better 
indicator of the average “resolution scale” for the problem than l/min[-Re(hi)]. 
(In some cases min[-Re(hi)] = 0.) 

The difficulty with stiff problems is the prohibitive amounts of computer time 
required for their solution by classical ODE solution methods, such as the popular 
explicit Runge-Kutta and Adams methods. The reason is the excessively small 
step sizes that these methods must use to satisfy stability requirements. Because 
of the approximate nature of the solutions generated by numerical integration 
methods, errors are inevitably introduced at every step. For a numerical method 
to be stable, errors introduced at any one step should not grow unbounded as the 
calculation proceeds. To maintain numerical stability, classical ODE solution 
methods must use small step sizes of order l/max[-Re(hi)] even after the rapidly 
decaying components have decreased to negligible levels. Examples of the step 
size pattern used by an explicit Runge-Kutta method in solving stiff ODE problems 
arising in combustion chemistry are given in references 8 and 9. Now, the size of 
the integration interval for the evolution of the slowly varying components is of 
order l/min[-Re(hi)]. Consequently, the number of steps required by classical 
methods to solve the problem is of order max[-Re(&)]/min[-Re(&)], which is 
very large for stiff ODE’S. 

For stiff problems the LSODE package uses the backward differentiation 
formula (BDF) method (e.g., ref. lo), which is among the most popular currently 
used for such problems (ref. 11). The BDF method possesses the property of stiff 
stability (ref. 10) and therefore does not suffer from the stability step size constraint 
once the rapid components have decayed to negligible levels. Throughout the 
integration the step size is limited only by accuracy requirements imposed on the 
numerical solution. Accuracy of a numerical method refers to the magnitude of 
the error introduced in a single step or, more precisely, the local truncation or 
discretization error. The local truncation error & at & is the difference between 
the computed approximation and the exact solution, with both starting the 
integration at the previous mesh point tn-1 and using the exact solution y (&-I) 
as the initial value. The local truncation error on any step is therefore &e error 
incurred on that step under the assumption of no past errors (e.g., ref. 12). 

The accuracy of a numerical method is usually measured by its order. A 
method is said to be of order 4 if the local truncation error varies as hi+’. More 
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1. Introduction 

precisely, a numerical method is of order 4 if there are quantities C and h, (> 0) 
such that (refs. 3 and 13) 

for all 0 < h, I h,, 

where is an N-dimensional column vector containing the absolute values of 
the dj,n (i = 1, ...,N). The coefficient vectorc may depend on the function defining 
the ODE and the total integration interval, but it should be independent of the step 
size h, (ref. 13). Accuracy of a numerical method refers to the smallness of the 
error introduced in a single step; stability refers to whether or not this error grows 
in subsequent steps (ref. 7). 

To satisfy accuracy requirements, the BDF method may have to use small step 
sizes of order l/max(Re I&l) in regions where the most rapid exponentials are 
active. However, outside these regions, which are usually small relative to the 
total integration interval, larger step sizes may be used. 

The LSODE package also includes the implicit Adams method (e.g., refs. 4 and 
IO), which is well suited for nonstiff problems. Both integration methods belong 
to the family of linear multistep methods. As implemented in LSODE these 
methods allow both the step size and the method order to vary (from I to 12 for 
the Adams method and from 1 to 5 for the BDF method) throughout the problem. 
The capability of dynamically varying the step size and the method order is very 
important to the efficient use of linear multistep methods (ref. 14). 

The LSODE package consists of 2 1 subprograms and a BLOCK DATA module. 
The package has been designed to be used as a single unit, and in normal 
circumstances the user needs to communicate with only a single subprogram, also 
called LSODE for convenience. LSODE is based on, and in many ways resembles, 
the package GEAR (ref. 1 3 ,  which, in turn, is based on the code DIFSUB, written 
by Gear (refs. 10 and 16). All three codes use integration methods that are based 
on a constant step size but are implemented in a manner that allows for the step 
size to be dynamically varied throughout the problem. There are, however, many 
differences between GEAR and LSODE, with the following important 
improvements in LSODE over GEAR: (1) its user interface is much more 
flexible; (2) it is more extensively modularized; and ( 3 )  it uses dynamic storage 
allocation, different linear algebra modules, and a wider range of error types (ref. 
17). Most significantly, LSODE has been designed to virtually eliminate the need 
for user adjustments or modifications to the package before it can be used 
effectively. For example, the use of dynamic storage allocation means that the 
required total storage is specified once in the user-supplied subprogram that 
communicates with LSODE; there is no need to adjust any dimension declarations 
in the package. This feature, besides making the code easy to use, minimizes the 
total storage requirements; only the storage required for the user's problem needs 
to be allocated and not that called for by a code using default values for parameters, 
such as the total number of ODES, for example. The many different capabilities 
of the code can be exploited quite simply by setting values for appropriate 

4 



1. Introduction 
parameters in the user’s subprogram. Not requiring any adjustments to the code 
eliminates the user’s need to become familiar with the inner workings of the code, 
which can therefore be used as a “black box,” and, more importantly, eliminates 
the possibility of errors being introduced into the modified version. 

The remainder of this report is organized as follows: In chapter 2 we describe 
the numerical integration methods used in LSODE and how they are implemented 
in practice. The material presented in this chapter is based on, and closely 
follows, the developments by Gear (refs. 10 and 18 to 20) and Hindmarsh (refs. 1, 
2, 15, 21, and 22). Chapter 3 describes the features and layout of the LSODE 
package. In chapter 4 we provide a detailed guide to its usage, including possible 
user modifications. The use of the code is illustrated by means of a simple test 
problem in chapter 5. We conclude this report with a brief discussion on code 
availability in chapter 6. 
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Chapter 2 
Description and Implementa- 
tion of Methods 
2.1 Linear Multistep Methods 

The numerical methods included in the packaged code LSODE generate 
approximate solutions X to the ordinary differential equations (ODE'S) at discrete 
points & (n = 1,2, ...). Assuming that the approximate solutions L+ have been 
computed at the mesh points 5n-j (j = lY2, ...), these methods advance the solution 
to the current value & of the independent variable by using linear multistep 

. formulas of the type 

j=l j = O  

where the current approximate solution vector 41, consists of N components, 

and the superscript T indicates transpose. In equation (2. l), fn-i [= is the 
approximation to the exact derivative vector at cn+, y(&+) [= f( y(cn+))], where 
for notational convenience the 5 argument off has b&n droppedrthe coefficients 
{a,} and {pi} and the integers K1 and K2 are associated with a particular methd, 
and h, (= tn - &-I) is the step size to be attempted on the current step [5n-1,&]. 
The method is called linear because the {Yj} and { f i }  occur linearly. It is called 
multistep because it uses information from several previous mesh points. The 
number max(K1, K2) gives the number of previous values involved. 

The values K1 = 1 and K2 = q - 1 produce the popular implicit Adams, or 
Adams-Moulton (AM), method of order q: 
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(2.6b) 



2.2 Corrector Iteration Methods 
methods are given by Gear (ref. 10) for q 5 6 .  In equation (2.5), although the 
subscript n has been attached to the step size h, indicating that h, is the step size to 
be attempted on the current step, the methods used in LSODE are based on a 
constant h. When the step size is changed, the data at the new spacing required to 
continue the integration are obtained by interpolating from the data at the original 
spacing. Solution methods and codes that are based on variable step size have 
also been developed (refs. 17,23, and 24) but are not considered in the present 
work. 

2.2 Corrector Iteration Methods 

If Po = 0, the methods are called explicit because they involve only the known 
values {&} and {&+}, and equation (2.1) is easy to solve. If, however, 
Po # 0, the methods are called implicit and, in general, solution of equation (2.1) is 
expensive. For both methods, equations (2.3) and (2.4), Po is positive for each q 
and because f is, in general, nonlinear, some type of iterative procedure is needed 
to solve equation (2.5). Nevertheless, implicit methods are preferred because they 
are more stable, and hence can use much larger step sizes, than explicit methods 
and are also more accurate for the same order and step size (refs. 4, 10, and 12). 
Explicit methods are used as predictors, which generate an initial guess for X. 
The implicit method corrects the initial guess iteratively and provides a reasonable 
approximation to the solution of equation (2.5). 

The predictor-corrector process for advancing the numerical solution to & 
therefore consists of first generating a predicted value, denoted by a'], and then 
correcting this initial estimate by iterating equation (2.5) to convergence. That is, 
starting with the initial guess ~ ' 1 ,  approximations am] (m = 1,2, ...m are 
generated (by using one of the techniques discussed below) until the magnitude of 
the difference in two successive approximations approaches zero within a specified 
accuracy. The quantity am] is the approximation obtained on the mth iteration, 
the integer M is the number of iterations required for convergence, and we accept 
g[MJ as an approximation to the exact solution y at Cn and therefore denote it by 
X although, in general, it does not satisfy equagon (2.5) exactly. 

At each iteration m the quantity h,Zp1, which is defined here, is computed 
from ~ " ' 1  by the relation 

Now, as discussed by Hindmarsh (ref. 21) and shown later in this section, if am] 
converges as m -+ 00, the limit, that is, , must be a solution of 

equation (2.5) and Sz1 converges to f ,  [= €&)I, the approximation to - y(en). 

Em1 lim Y n  
m-w- 
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2. Description and implementation of Methods 

Hence h y[" l  is the mth estimate for hnfn and lim h y["] = h,&. The predicted 

value of h&, denoted by h y lo1 ,  is also obtained from equation (2.7) (by setting 

m = 0). In practice, we terminate the calculation sequence at a finite number M of 
[MI iterations and accept as an approximation to h& the quantity hn%n hn%, , 

which is obtained from dw by using equation (2.7). Note that %,is only an 
approximation to fn because Gw does not, in general, satisfy equation (2.5) 
exactly (see eqs. (2.5) and (2.7)). Moreover, because TLM] is defined to satisfy 
the solution method, in the sense of equation (2.7), it is not necessarily equal to 
f(Y[nMl). Therefore 4lff"l and %LMl do not necessarily satisfy the ODE, equa- 
tion (1. l). Thus, in practice, to advance the solution, the methods use the {% } (e.g., 
see eqs. (2.8a) and (2.8b)), rather than the { f j }  as written in equation (2.1), 

After convergence of the estimates $"'I, we could define TiM] to be equal to 
f ( ~ ! ) ,  so that G'l and 45fYIl satisfy the ODE exactly. However, besides being 
more expensive because it will require one derivative evaluation, performing this 
operation is actually less stable for stiff equations than using equation (2.7) 
(ref. 25). 

The predicted value at cn, do], is generated by a qth-order explicit formula 
similar to equations (2.3) and (2.4) (refs. 18 and 20): 

m-00 n-n n -n 

n -n 

j=1 

for the AM method of order q and 

(2.8a) 

(2.8b) 

for the BDF method of order q. In these two equations ' n - j  is the approximation 
to fn-j computed on the step [E,n-j-l,cn-j]. The coefficients {a;} and {p;} are 
selected such that equation (2.8a) or (2.8b) will be exact if the solution to 
equation (1.1) is a polynomial of degree q or less. 

The predictor step for the two methods can be generalized trivially as 

(2.9) 

where y ~ *  is given by the right-hand sides of equations (2.8a) and (2.8b), 
respectiGIy, for the Ah4 and BDF methods. 
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2.2. Corrector Iteration Methods 

To correct the initial estimate given by equation (2.9), that is, to solve 
equation (2.5), LSODE includes a variety of iteration techniques-functional, 
Newton-Raphson, and a variant of Jacobi-Newton. 

2.2.1 Functional Iteration 

To derive the functional iteration technique, also called simple iteration 
(refs. 11 and 26) and successive substitution (ref. 27), we rewrite equation (2.5) as 
follows: 

where 

The (m + 1)th estimate, Gm+ll (m = O , l ,  ..., M-1), is then obtained from 
equation (2.10) by (e.g., ref. 27) 

. [m+l] 
Now equation (2.7) gives the following expression for hnyn 

Comparing equations (2.12) and (2.13) gives 

for functional iteration. 

We now define’ the vector function g(y) - -  by 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

which, upon using equation (2.7), gives 
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2. Description and Implementation of Methods 

(2.16) 

By using equation (2.15) we can rewrite the functional iteration equation (2.12) as 
follows: 

Finally the combination of equations (2.14) and (2.16) produces the following 

functional iteration procedure for hnk, : 

Equation (2.17) is simple to use, but it converges only linearly (ref. 27). In 
addition, for successful convergence the step size may be restricted to very small 
values for stiff problems (refs. 4, 10, 12, 26, and 28), as shown here. By using 
equation (2.14) we can rewrite equation (2.16) as 

for m 2 1. Hence, equation (2.17) can be rewritten as 

By using the Lipschitz condition, equation (1.3), we get the following relation 
from equation (2.20): 

which shows that the iteration converges, that is, the successive differences 

12 



2.2. Corrector Iteration Methods 

decrease, only if 

(h,(Poa 1- (222) 

Now stiff problems are characterized by, and often referred to as systems with, 
large Lipschitz constants (e.g., refs. 4, 12, and 26), and so equation (2.22) restricts 
the step size to very small values. Indeed, the restriction imposed by this 
inequality on h, is exactly of the same form as that imposed by stability requirements 
on classical methods, such as the explicit Runge-Kutta method (refs. 4 and 26). 
For this reason, when functional iteration is used, the integration method is 
usually said to be explicit even though it is implicit (ref. 17). 

2.2.2 Newton-Raphson Iteration 

Newton-Raphson (NR) iteration, on the other hand, converges quadratically 
and can use much larger step sizes than functional iteration (refs. 27,29, and 30). 
Rapid improvement in the accuracy of the estimates is especially important 
because the corrector is iterated to convergence. The reason for iterating to 
convergence is to preserve the stability characteristics of the corrector. If the 
correction process is terminated after a fixed number of iterations, the stability 
characteristics of the corrector are lost (refs. 4 and 12), with disastrous consequences 
for stiff problems. 

To derive the NR iteration procedure, we rewrite equation (2.5) as 

(2.23) 

so that solving equation (2.5) is equivalent to finding the zero of E. The quantity 
B a r n $  is the residual vector on the mth iteration; that is, it is the amount by 
which ~ m l  fails to satisfy equation (2.5). To obtain the (m + 1)th estimate, we 
expand equation (2.23) in a Taylor series about the mth estimate, neglect the 
second and higher derivatives, and set Bdm+’])  = 0 because we seek a ~ m + ’ l  
that produces this result (e.g., ref. 27). Performing these operations and then 
rearranging terms give the following relation for the NR iteration technique: 

(2.24) 

where the NXN matrix P is given by 

13 



2. Description and Implementation of Methods 

In equation (2.25), I is the NxN identity matrix and J is the Jacobian matrix, 
equation (1 3. Comparing equations (2.15) and (2.23) shows that 

so that equation (2.24) can be rewritten as follows: 

(2.27) 

The NR iteration procedure for h,%’, is derived by subtracting equation (2.7) 
from equation (2.13) and then using equation (2.27). The result is 

(2.28) 

This iteration will converge provided that the predicted value is sufficiently 
accurate (refs. 4 and 12). The prediction method, equation (2.9), provides a 
sufficiently accurate initial estimate that the average number of iterations per step 
is less than 1.5 (ref. 7). In fact, the predictor is generally as accurate as the 
corrector, which is nonetheless needed for numerical stability. However, much 
computational work is required to form the Jacobian matrix and to perform the 
linear algebra necessary to solve equation (2.27). Now, because the Jacobian does 
not appear explicitly in the ODE’S, equation (1. I), or in the solution method, 
equation (2.5), J need not be very accurate. Therefore, for problems in which the 
analytical Jacobian matrix is difficult or impossible to evaluate, a fairly crude 
approximation such as the finite-difference quotient 

is adequate. In equation (2.29), A 5  is a suitable increment for thejth component 

Inaccuracies in the iteration matrix may affect the rate of convergence of the 
solution but not the solution if it converges (refs. 4 and 21). Hence this matrix 
need only be accurate enough for the iteration to converge. This beneficial fact 
can be used to reduce the computational work associated with linear algebra, as 
described in chapter 3. 

of y. 
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2.2. Corrector Iteration Methods 
2.2.3 Jacobi-Newton Iteration 

Jacobi-Newton (JN) iteration (ref. 31), also called Jacobi iteration (ref. 32), is 
obtained from Newton-Raphson iteration by neglecting all off-diagonal elements 
of the Jacobian matrix. Hence for JN iteration 

0, i # j  
J. .  = (2.30) 

This technique is as simple to use as functional iteration because it does not 
require any matrix algebra. Also, it converges faster than functional iteration but, 
in general, not as fast as NR iteration. 

A method closely resembling JN iteration is implemented as a separate method 
option in LSODE. It is like JN iteration in that it uses a diagonal approximation D 
to the Jacobian matrix. However, the diagonal elements Dii are, in general, 
different from Jii and are given by the difference quotient 

(2.3 1) 

where the increment vector A I  = 0.lpo - g(YJp1). If J is actually a diagonal matrix, 
Dii = Jii + O(Ayi?), but, in general, Dii effectively lumps together the various 
elements { J g }  in row i of J. 

2.2.4 Unified Formulation 

The different iteration methods can be generalized by the recursive relations 

(2.32) 

and 

(2.33) 

where P depends on the iteration method. For functional iteration P = I, and for 
NR and JN iterations P is given by equation (2.25), where J is the appropriate 
Jacobian matrix, equation (1.5), (2.30), or (2.31). 
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23 Matrix Formulation 

2.3 Matrix Formulation 

The implementation of linear multistep methods is aided by a matrix formulation 
(ref. 21). This formulation, constructed by Gear (ref. 18), is summarized here. 

To solve for X, and h&by using equations (2.35) to (2.37), we need, and 

thereforemusthavesaved, t h e l = q +  1 columnvectorsX,-1, hngn-l, hn4n-2,..., 
and hngn-, for t h e m  method of order q, or L-1, x-2, ..., X,*, and hngn-l 
for the BDF method of order 4. Hence for the AM method of order 4 we define 
the NxL history matrix wn-l at gn-l by 

that is, 

wn-l = (2.39) 



The matrix formulations for wiol and w, are derived as follows: Substituting 
the expression for go]. equation (2.8a) or (2.8b), into that for h,gyl, equa- 
tion (2.35), and then using equation (2.6a) or (2.6b) give 

for the AM method of order q and 

(2.42b) P i  . a.- a. 
h n ~ ~ ]  =z( ' Po '1 -n- Y J + -hnyn-l P O  

J = 1  

for the BDF method of order q. Equations (2.8a) and (2.42a), or (2.8b) and 
(2.42b), that is, the prediction process, can be rewritten as the matrix equation 

w[ol n - -w,-p> (2.43) 

where the LxL matrix B depends on the solution method. For the AM method of 
order q, it is given by 

( 1  0 0 0  . . .  0 0 )  

p; 

p; 0 1 .  . . 0 0  

P ; - p l  

P O  

P O  

1 0 .  . . 0 0 

B = l  . 
. .  
. .  

g 0 0 .  16 P O  
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23 Matrix Formulation 

and for the BDF method of order q, 

The 

where 

for t h e  

B ,= 

; corrector 

wJml, the 

: AM metl 

* 
a1 

P; 
* 

a 2  

a 3  
* 

* 
xq-1 

aq 
* 

* 
a1 - a1 

PO  

* 
a2 - a 2  

P O  

a 3  - a3 
PO 

* 

* 
aq-1 - aq-1 

P O  

aq - aq 

P O  

* 

1 0 0  . . .  0 

0 0 0  . . .  0 

0 1 0  . . .  0 

0 0 1  . . .  0 

_ - - . _ . .  

. . . . . . . 

. . . . .  1 .  

0 0 0  . . .  1 

0 0 0  . . .  0 

' equation, equation (2.36), can be expressed in 1 

. history matrix on the mth 

iod and by 

iteration, is given by 

natrix 

1 

(2.44b) 

form as 

(2.45) 

(2.46a) 
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for the BDF method, - k is the L-dimensional vector 

and P depends on the iteration technique, as described in section 2.2.4. 
The matrix formulation of the methods can be summarized as follows: 

Predictor: 

} m=0,1, ..., M-I. 

w,=w, [MI . 

2.4 Nordsieck’s History Matrix 

(2.46b) 

(2.47) I 

(2.48) 

(2.49) I 

(2.50) 

Instead of saving information in the form w,l, equation (2.38a) or (2.38b), 
Gear (ref. 18) suggested making a linear transformation and storing the matrix 
zn-l given by 

where the LxL transformation matrix Q is nonsingular. In particular, Q is chosen 
such that the matrix representation suggested by Nordsieck (ref. 33) is obtained: 



2.4 Nordsieck‘s History Matrix 

that is, the NXL matrix zn-l is given by 

(2.53) 

In equation (2.53),*?,-1 is thejth derivative of the approximating polynomial for 
Yi,*l. Because scaled derivatives h,&b?-l/j! are used, Q is independent of the 
step size. However, Q depends on the solution method. The N rows of zn-l are 
numbered from 1 to N, so that the ith row (i = 1, ...m contains the q + 1 scaled 
derivatives of the ith component, Yi,+l, of &-1. The q + 1 columns are, however, 
numbered from 0 to q, so that the column number corresponds to the order of the 
scaled derivative stored in that column. Thus thejth column (j = O,l, ...,q), which 
we denote by the vector &-lo>, contains the vector hB$-l/j!. The Nordsieck 
matrix formulation of the method is referred to as the “normal form of the 
method” (ref. 10). 

Applying the appropriate transformation matrix Q to the predictor equation, 
equation (2.48), gives 

where 

(2.55) 

is the predicted NxL Nordsieck history matrix at & and 
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2. Description and Implementation of Methods 

A = Q-~BQ. (2.56) 

The LxL prediction matrix A provides a qth-order approximation to zhol in terms 
of z,-1 and is therefore the lower-triangular Pascal triangle matrix (ref. lo), with 
element A0 given by 

l o ,  i < j  

where ( ;) is the binomial coefficient, defined as 

Hence 

A :  

0 0 0 . . .  . .  0 

1 0 0 . . . .  . 

2 1 . .  

3 3 1 o . . .  

0 0 

1 

9 1 

(2.57) 

(2.58) 

(2.59) 

The principal advantage of using the Nordsieck history matrix is that the matrix 
multiplication implied by equation (2.54) can be carried out solely by repeated 
additions, as shown by Gear (ref. 10). Hence computer multiplications are 



2.4 Nordsieck’s History Matrix 
avoided, resulting in considerable savings of computational effort for large 
problems. Also A need not be stored and zhol overwrites z,1, thereby reducing 
memory requirements. 

Because 

(i+1) j+ l  = ( j+ l  ) + (;) 
and Aii =Ai0 = 1 for all i, the product zA is computed as follows (refs. 10 and 15): 

For k=0,1, ..., 4-1, do: 
For j = q , q - l ,  ..., k + l ,  do: 

zi,i-l tZi , i+zi , i - l ,  i= l ,  ... , N .  
(2.61) 

In this equation the subscripts n and n-1 have been dropped because the z values 
do not indicate any one value of E, but represent a continuous replacement process. 
At the start of the calculation procedure given by equation (2.61), z = zn-l; and at 
the end z = zhol. The arrow “c” denotes the replacement operator, which means 
overwriting the contents of a computer storage location. For example, 

means that zi,4 is added to zi,3 and the result replaces the contents of the location 
z ~ .  The total number of additions required in equation (2.61) is Nq(q + 1)/2. The 
predictor step is a Taylor series expansion about the previous point L-1 and is 
independent of both the integration method and the ODE. 

Another important advantage of using Nordsieck‘s formulation is that it makes 
changing step size easy. For example, if at & the step size is changed from h, to 
rh,, the new history matrix is obtained from 

z, -,C, 

where the LXL diagonal matrix C is given by 

C =  

1 0 
r 

2 r 

(2.62) 

(2.63) 
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2. Description and Implementation of Methods 

The rescaling can be done by multiplications alone, as follows: 

R = l  
For j = l ,  ...,q, do: 

R t rR 
zi,j + Z ~ , ~ R ,  i = l ,  ..., N .  

The corrector equation corresponding to equation (2.49) is given by 

where ziml, the Nordsieck history matrix on the mth iteration, is given by 

and 

(2.64 

(2.65) 

(2.66) 

(2.67) 

is an L-dimensional vector 

4 = (Q,, Q, , ..., Qq). (2.68) 

For the two solution methods used in LSODE the values of 1 are derived in 
references 21 and 22 and reproduced in tables 2.1 and 2.2. Methods expressed in 
the form of equations (2.54) and (2.65) are better described as multivalue or L- 
value methods than multistep methods (ref. 10) because it is the number L of 
values saved from step to step that is significant and not the number of steps 
involved. 

The two matrix formulations described here are related by the transformation 
equations (2.51), (2.54), and (2.65) and are therefore said to be equivalent 
(ref. 10). The equivalence means that if the step [Cn-1,&J is taken by the two 
methods with equivalent past values wn-l and zn-l, that is, related by equa- 
tion (2.51) through Q, then the resulting solutions w, and z, will also be related 
by equation (2.51) through Q. apart from roundoff errors (ref. 21). The 
transformation does not affect the stability properties or the accuracy of the 
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TABLE 2.1 .-METHOD COEFFICIENTS FOR ADAMS-MOULTON METHOD IN NORMAL FORM OF ORDERS 1 TO 12 

4 Qo el &2 e3 '4 &5 '6 &7 '8 Q1O Q l  1 2 

2 2  l 1  

3 T ?  l i  3 

1 1  1 

1 1 

5 3 1 1 

1 

5 

17 1 

- 1 1  1 4 12 3 24 1 -  

1 -  1 - 25 - 35 - 

95 137 5 - 
203 - 49 - 7 - 7 -  1 19087 49 - 

5 7 2 0  24 72 48 120 
251 

1 - TO 720 6 -  288 l 1 2 0 5  96 

7 -  1440 5040 60480 w 270 192 ' 144 

1 - 1 - 23 - 469 967 - 7 
17280 1 %  540 2880 90 2160 1260 40320 

1 1 1070017 761 29531 267 - 1069 - _. 13 - 3628800 560 30240 640 9600 160 6720. 8960 362880 

29 1 7129 6515 4523 19 - L _  3013 5 - 25713 1 - - - 
l o  89600 5040 6048 9072 128 

7381 177133 84095 341693 8591 7513 121 11 - 1 1  - 1 26842253 - 1 1  - 95800320 
83711 190553 341747 139381 242537 1903 10831 11 - 1 1 ___ 1 4777223 

3 

103680 1344 96768 &6 3628800 

5040 151200 145152 1814400 207360 1209600 193536 272160 7257600 39916800 

h) " 17418240 ' 55440 151200 518400 604800 4354560 201600 9676800 120960 207360 6652800 479001600 
VI 



2. Description and Implementation of Methods 

TABLE 2.2.-METHOD COEFFICIENTS FOR BACKWARD 
DIFFERENTIATION FORMULA METHOD IN 

NORMAL FORM OF ORDERS 1 TO 6 

QO 

1 
- z 
3 

6 
11 

24 
50 
120 
274 

720 
1764 

- 
- 
- 
- 
- 

- 

Ql - 
1 

3 
3 

11 
11 

50 
50 
274 
274 

- 
- 
- 
- 
- 
- 
- 

1764 
1764 - 

Q2 

- 
1 
3 
- 

6 
11 

35 
50 

274 

- 
- 
- 
- 
225 

1624 
- 
1764 

- 
Q3 

735 
1764 

Q4 Q5 Q6 

1 
50 

15 1 
274 274 

175 21 1 
1764 1764 1764 

- 

- -  

- - -  

method, but roundoff properties and computational effort depend on the 
representation used, as discussed by Gear (ref. 10). 

The first two columns of z, and w, are identical (see eqs. (2.38a), (2.38b), and 
(2.52)), and so Qo = Po and 41 = 1. For the same reason the corrector iteration 
procedures for & and h,%, remain unchanged (see eqs. (2.45), (2.47), and 
(2.65)). However, to facilitate estimation of the local truncation error, a different 
iteration procedure than that given by equation (2.65) is used. To derive the new 
formulation, zim+l1 is written as 

or 

(2.69) 

Substituting the difference z P l 1  - zkl obtained from equation (2.65) into equa- 
tion (2.69) produces 

\ / j=O 

where c$,"'+'~ is defined as 
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2.4 Nordsieck's History Matrix 

(2.71) 

It is clear from this equation that 

Equation (2.70) can be used to rewrite - g (arn1), equation (2.16), as follows: 

because 41 = 1. 
Finally, because only the first two columns of z, enter into the solution of equa- 

tion (2.5), the successive corrections can be accumulated and applied to the 
remaining columns of z, after convergence. Clearly, not updating all columns of 
the Nordsieck history matrix after each iteration results in savings of computational 
effort, especially when a high-order method is used and/or the number of ODE'S 
is large. For additional savings of computer time the history matrix is updated 
only if both (1) the iteration converges and (2) the converged solution satisfies 
accuracy requirements. 

The predictor-corrector formulation utilized in LSODE can be summarized as 
follows: 

Predictor: 

Corrector: 

(2.74) 
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2. Description and Implementation of Methods 

(2.76) 

2.5 Local Truncation Error Estimate ancl Controll 

The local truncation error is defined to be the amount by which the exact 
solution Y (5) to the ODE system fails to satisfy the difference equation of the 
numericarmethod (refs. 4, 10, 12, and 26). That is, for the linear multistep 
methods, equation (2. I), the local truncation error vector Si, at 5, is the residual in 
the difference formula when the ap roximations (Xj} and {t]} are replaced by the 
exact solution and its derivative! In LSODE, however, the basic multistep 
formula is normalized by dividing it by 

j=O 

'Although the corrector convergence test is performed before the local truncation error 
test (which is done only if the iteration converges), we discuss the accuracy test first 
because the convergence test is based on it. 

*As discussed in chapter 1, another commonly used definition for the local truncation 
error is that it is the error incurred by the numerical method in advancing the approximate 
solution by a single step assuming exact past values and no roundoff errors (refs. 12, 13, 
and 21). That is, & is the difference between the numerical approximation obtained by 
using exact past values (Le., { y(cnj)] and [ y&-,)]) and the exact solution ~(5"): - - - 

t 

d" = 1" - y(c"), (2.77) 
where, for example, 

(2.78) 
j=1 

for the BDF method of order q. For an explicit method the local truncation error given by 
equation (2.77) and that obtained by using the definition given in the text above (Le., the 
residual of eq. (2.1)) have the same magnitude. However, for an implicit method the two 
quantities are only approximately proportional to one another (ref. 4), although they agree 
asymptotically in the limit of small step size. 
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2.5 Locpl h c a t i o n  Error Estimate and Control 
for reasons given by Henrici (ref. 29) and Gear (ref. 10); however, see Lambert 
(ref. 4). For example, the BDF method of order q, equation (2.4), can be 
expressed in this form as 

where q = - 1. The local truncation error for this method is then given by 

(2.79) 

(2.80) 

where &, consists of N components 

If we assume 
order, each yi(E,, 
Taylor series ah  
be stated compai 

that each yi (i 
j) (i = 1, ..., N, 
mt E,,. Upon c 
ctly as 

= 1, ...m possesses derivatives of arbitrarily high 
j = 1, ...,q) in equation (2.80) can be expanded in a 
ollecting terms the resulting expression ford,  can 

m 

(2.82) 
k=O 

where the { c k }  are constants (e.g., ref. 10). A method is said to be of order q if 
CO = C1= ... = C4 = 0, and Cq+l # 0. The local truncation error is then given by 

Ci, = cq+1h$+1y(q+l)(5,)+ 0 ( h . 4 + 2 ) 7  (2.83) 

where the terms C4+1 and Cq+1h,f+l ~(q'")(E,n) are, respectively, called the error 
constant and the principal local truncation error (ref. 4). In particular, for the BDF 
method of order q in the normalized form given by equation (2.79) (refs. 22 
and 29) 

1 
cq+1= q+l' (2.84a) 

For the implicit Adams method of order q in normalized form (ref. 22) 
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2. Description and Implementation of Methods 

cq+l = 140 (4 + 1) - 40 (4)). (2.84b) 

where Qo(q) and @o(q + 1) are, respectively, the zeroth component of the coefficient 
vectors for the AM method in normalized form of orders q and (q + 1). 

The (q + 1)th derivative at c,, y(qf')(cn), is estimated as follows: As discussed 
in section 2.4, at each step the solution method updates the Nordsieck history 
matrix z,: 

(2.85) 

For either method of order q the last column of z,, zn(4), contains the vector 
hJL(q)/q!, which is the approximation to hz y(q)(c,)/q!. Now the prediction step 
being a Taylor series method of order q does not alter the last column of z,-i, 
namely the vector hjx($,/q!. Hence the last column of zAol, zLol(q), contains the 
vector h$&Ll/q!. The difference, &) - dol(q), is given by 

by using the mean value theorem for derivatives. However, equation (2.76) gives 
the following expression for ~ ( q )  - zLol(q): 

Equating equations (2.86) and (2.87) gives the following approximation for 
h$+'dq+') if higher-order terms are neglected: 

(2.88) 

Substituting this equation into equation (2.83) and neglecting higher-order terms 
give the following estimate for &: 

In order to provide for user control of the local truncation error, it is normalized 
by the error weight vector E,, with element EWT,,, defined by 
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2.5 Locpl lhmcation Error Estimate and Control 

EWT~,, = RTOL~~Y~, , -~~  + ATOL,, (2.90) 

where the user-supplied local relative (RTOLi) and absolute (ATOLi) error toler- 
ances for the ith solution component are discussed in chapter 4. The solution X 
is accepted as sufficiently accurate if the following inequality is satisfied: 

(2.9 1) 

.7 

where 11.11 denotes the weighted root-mean-square (rms) norm, which is used for 
reasons discussed by Hindmarsh (ref. 15). Equation (2.91) can be rewritten as 

by using equation (2.89). If we define the test coefficient z(4,q) as 

the accuracy test, equation (2.92), becomes 
? 

llenll 5 z(q,q)- 

If we further define the quantity D4 by 

the accuracy test reduces to 

? 
D I 1 .  4 

T 
'H 

'he reasc 
rhen we 

m for u 
discuss 

sing 
step 

two 
size 

variables in 
and method 

the definition for 
order selection in 

z will become 
section 2.7. 

(2.92) 

(2.93) 

(2.94) 

(2.95) 

(2.96) 

apparent 
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(2.100) 



2.7 Step Size and Method Order Selection and Change 

where 
ck = max(0.2~,-~, cm) (2.101) 

and 

is the estimated convergence rate (refs. 22 and 25). Clearly at least two iterations 
are required before cm can be computed. For the first iteration c& is set equal to 
the last value of c, from the previous step. For the first iteration of the very first 
step and, in the case of NR or JN iteration, after every update of the Jacobian 
matrix, c& is set equal to 0.7. Equation (2.100) assumes that the iteration 
converges linearly, that is, lim (E,+#,) = finite constant cy and essentially 

m-w- 
anticipates the magnitude of em one iteration in advance (ref. 15). Equation 
(2.101) shows that the convergence rate of the latest iteration is given much more 
weight than that of the previous iteration. The rationale for this decision is 
discussed by Shampine (ref. 25), who examined various practical aspects of 
implementing implicit methods. 

2.7 Step Size and Method Order Selection 
and Change 

Periodically the code attempts to change the step size and/or the method order 
to minimize computational work while maintaining prescribed accuracy. To 
minimize complications associated with method order and step size selection, the 
new order 4' is restricted to the values 4 - 1, 4, and 4 + 1, where 4 is the current 
order. For each q'the step size h'(q') that will satisfy exactly the local error bound 
is obtained by assuming that the highest derivative remains constant. The method 
order that produces the largest h' is used on the next step, along with the 
corresponding h', provided that the h' satisfies certain restrictions described in 
chapter 3. 

For the case 4' = 4, h'(q) is computed by setting D&') (= value of D, for step 
size h') = 1 (see eq. (2.96)), so that the local accuracy requirement is satisfied 
exactly. Then because d, varies as h,4'l (see eq. (2.83)), we get 

or 

1 , ,- 

(2.103) 
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2. Description and Implementation of Methods 

where r is the ratio of the step size to be attempted on the next step to its current 
value. The subscript “same” indicates that the same order used on the current step 
is to be attempted on the next step. 

For the case q‘ = 4 - 1, &(q - 1) is of order q, where the variable 4 - 1 indicates 
the method order for which the local truncation error is to be estimated, and 

where Cq = I Qo(q) - Qo(q - 1)1 for the AM method and l/q for the BDF method 
(refs. 22 and 29). Now, the last column of z,, z,(q), contains the vector h$&q)/q! 
(see eq. (2.85)), and so &(q - 1) is easily calculated. On using the rms norm, 
equation (2.91), the error test for 4’ = q - 1 becomes 

(2.105) 

If we define the test coefficient ~ ( q , q  - 1) as l/Cqq!, equation (2.105) can be 
written as 

1 
I 1, (2.106) 

where zi,Jq) is the ith element of ~,(q). The first variable in the definition for ‘I: 
gives the method order used on the current step. The second variable indicates the 
method order for which the local truncation error is to be estimated. 

The step size h’(4 - 1) to be attempted on the next step, if the order is reduced to 
4 - 1, is obtained by using exactly the same procedure that was utilized for the 
case q‘ = 4, that is, by setting Dq-l(h’) = 1. Because &(q - 1) varies as h i ,  the 
resulting step size ratio ‘down is given by 

1 

The subscript “down” indicates that the order is to be reduced by 1. 
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2.7 Step Size and Method Order Selection and Change 
For the case q'= q + 1 the local truncation error &(q + 1) is of order q + 2 and is 

given by 

(2.108) 

where Cq+2 = I to(4 + 2) - to(q + 1)1 for t h e m  method and l/(q + 2) for the BDF 
method (refs. 22 and 29). This case is more difficult than the previous two cases 
because equation (2.108) involves the derivative of order q + 2. The derivative 

is estimated as follows. Equation (2.88) shows that the vector 4,& is 
@proximately proportional to h$+lGq+')/q!. We difference the quantity tqg 
over the last two steps and use the mean value theorem for derivatives to get 

Hence the error test for 4'= q + 1 becomes 

(2.1 10) 

where we have again used the ms norm and Vei,, is the ith component of V&. If 
we define the test coefficient z(q,q + 1) as 1/(Ce2q!tq), the error test, qua -  
tion (2. l lo), can be rewritten as 

(2.1 11) 

To solve for h'(q + l), we use the same procedure as for h'(q) and h'(q - 1). The 
resulting ratio rUp is given by 
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2.8 Interpolation at Output Stations 

therefore important that in implementing the solution method provision be made 
for the efficient computation of the solution at the required output stations. 
Moreover, the procedure used for these computations should not adversely affect 
the efficiency of the integration beyond the output station. Such a situation arises, 
for example, if the method has to adjust the step size to “hit” the output station 
exactly. Because the Nordsieck history array is used to store past history 
information, the solution can be generated at the output stations quite easily, as 
described next. 

For each E,,,,,, the integration is continued until the first mesh point n for which 
2 Lut, and then the solution at LUt is obtained by interpolation. Now the 

solution and its scaled derivatives up to order 4;t+1 are available at cn. Here q;t+1 
is the order to be attempted on the next step, that is, [Cn,&+l]. Hence the solution 
at SOUt, X(LuJ, is computed by using a (q;+l)th-order Taylor series expansion 
about cn and is given by 

If we define the quantity r by 

(2.1 17) 

where h;t+1 is the step size to be attempted on the next step, equation (2.116) can 
be rewritten as 

(2.118) 

Now 

is the kth column ~ ( k )  of z,, and so equation (2.11 8) can be expressed compactly 
as 
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2.9 Starting Procedure 

2.9 Starting Procedure 

At the outset of the integration, information is available at only the initial point 
50. Hence multistep methods cannot be used on the first step. The difficulty at 
the initial point is resolved easily by starting the integration with a single-step, 
first-order method. The Nordsieck history matrix zo at 50 is constructed fiom the 
initial conditions yo and the ODE'S as follows: - 

(2.123) 

where ho is the step size to be attempted on the first step. 
As the integration proceeds, the numerical solutions generated at the points 51, 

52, ... provide the necessary values for using multistep methods. Hence, as the 
numerical solution evolves, the method order and step size can be adjusted to 
their optimal values by using the procedures described in section 2.7. 
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Chapter 3 
Description of Code 
3.1 Integration and Corrector Iteration Methods 

The packaged code LSODE has been designed for the numerical solution of a 
system of first-order ordinary differential equations (ODE’S) given the initial 
values. It includes a variable-step, variable-order Adams-Moulton (AM) method 
(suitable for nonstiff problems) of orders 1 to 12 and a variable-step, variable- 
order backward differentiation formula PDF) method (suitable for stiff problems) 
of orders 1 to 5. However, the code contains an option whereby for either method 
a smaller maximum method order than the default value can be specified. 

Irrespective of the solution method the code starts the integration with a first- 
order method and, as the integration proceeds, automatically adjusts the method 
order (and the step size) for optimal efficiency while satisfying prescribed accuracy 
requirements. Both integration methods are step-by-step methods. That is, 
starting with the known initial condition ~ ( 5 0 )  at 50, where y is the vector of 
dependent variables, 5 is the independent ;&able, and 50 is ig initial value, the 
methods generate numerical approximations Y, to the exact solution y (E,n> at the 
discrete points Gn (n = 1,2, ...) until the end of the integration interval% reached. 
At each step [&-&,J both methods employ a predictor-corrector scheme, wherein 
an initial guess for the solution is first obtained and then the guess is improved 
upon by iteration. That is, startin with an initial guess, denoted by ~ ‘ 1 ,  
successively improved estimatesdmy(m = 1, ...,M) are generated until the iteration 
converges, that is, further iteration produces little or no change in the solution. 
Here &ml is the approximation computed on the mth iteration, and M is the 
number of iterations required for convergence. 

A standard explicit predictor formula-a Taylor series expansion method devised 
by Nordsieck (ref. 33)-is used to generate the initial estimate for the solution. A 
range of iteration techniques for correcting this estimate is included in LSODE. 
Both the basic integration method and the corrector iteration procedure are identified 
by means of the method flag h4F. By definition, h4F has the two decimal digits 
METH and MITER, and 
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3. Description of Code 

TABLE 3.1.-SUMMARY OF INTEGRATION METHODS INCLUDED IN LSODE 
AND CORRESWNDING VALUES OF METH, 

THE FIRST DECIMAL DIGIT OF MF 

METH Integration method 

I 
2 

Variable-step, variable-order. implicit Adams method of orders 1 to 12 
Variable-step, variable-order, implicit bxkward differentiation formula 

method of orders 1 to 5 

TABLE 3.2.4ORRECTOR ITERATION TECHNIQUES AVAILABLE IN LSODE 
AND CORRESPONDING VALUES OF MITER, 
THE SECOND DECIMAL DIGlT OF MF 

0 
1 
2 
3 

b4 
b5 

~~~~ 

Corrector iteration tcchniaue 

Functional iteration 
Modified Newton iteration with user-supplied analytical Jrroblan 
Modified Newton iteration with internally generated numerical Jacobian 
Modified Jacobi-Newton iteration with internally generated numerical 

Modified Newton iteration with user-supplied banded Jacobian 
Modified Newton iteration with internally generated banded Jacobian 

Jacobiana 

aModified Jacobi-Newton iteration with user-supplied analytical Jacobian can be. 
performed by specifying MITER = 4 and ML = Mu = Ob (Le., a banded Jacobian 
with bandwidth of I). 

Jacobian matrix. 
%e user must specify the lower (ML) and upper (MU) half-bandwidths of the 

MF=lOxMETH+MITER, (3.1 

where the integers METH and MITER indicate, respectively, the integration 
method and the corrector iteration technique to be used on the problem. Table 3.1 
summarizes the integration methods included in LSODE and the appropriate 
values for METH. The legal values for MITER and their meanings are given in 
table 3.2. The iteration procedures corresponding to MITER = 1 to 5 are 
described as modified Newton iteration techniques because the Jacobian matrix is 
not updated at every iteration. 

3.2 Code Structure 

The double-precision version of the LSODE package consists of the main core 
integration routine, LSODE, the 20 subprograms CFODE, DAXPY, DDOT, 
DGBFA, DGBSL, DGEFA, DGESL, DSCAL, DlMACH, EWSET, IDAMAX, 
INTDY, PREPJ, SOLSY, SRCOM, STODE, VNORM, XElZRWV, XSETF, and 
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3.2 Code Structure 

XSETUN, and a BLOCK DATA module for loading some variables. The single- 
precision version contains the main routine, LSODE, and the 20 subprograms 
CFODE, EWSET, INTDY, ISAMAX, PREPJ, RlMACH, SAXPY, SDOT, 
SGBFA, SGBSL, SGEFA, SGESL, SOLSY, SRCOM, SSCAL, STODE, 
WORh4, XERRWV, XSETF, and XSETUN. The subprograms DDOT, 
DlMACH, IDAMAX, ISAMAX, RlMACH, SDOT, and WORM are function 
routines-all the others are subroutines. The subroutine XERRWV is machine 
dependent. In addition to these routines the following intrinsic and external 
routines are used: DABS, DFLOAT, DMAX1, DMIN1, DSIGN, and DSQRT 
by the double-precision version; ABS, AMAX1, AMIN1, FLOAT, SIGN, and 
SQRT by the single-precision version; and MAXO, M I N O ,  MOD, and WRITE 
by both versions. 

Table 3.3 lists the subprograms in the order that they appear in the code and 
briefly describes each subprogram. Among these, the routines DAXPY, DDOT, 
DGBFA, DGBSL, DGEFA, DGESL, DSCAL, IDAMAX, ISAMAX, SAXPY, 
SDOT, SGBFA, SGBSL, SGEFA, SGESL, and SSCAL were taken from the 
LINPACK collection (ref. 34). The subroutines XERRW, XSETF, and 
XSETUN, as used in LSODE, constitute a simplified version of the SLATEC 
error-handling package (ref. 35). 

The structure of the LSODE package is illustrated in figure 3.1, wherein a line 
connecting two routines indicates that the lower routine is called by the upper one. 
For subprograms that have different names in the different versions of the code, 
both names are given, with the double-precision version name listed first. Also, 
the names in brackets are dummy procedure names, which are used internally and 
passed in call sequences. The routine F is a user-supplied subroutine that computes 
the derivatives dyi/& (i = 1, ...,N), where yi is the ith component of y and Nis the 
number of ODE’S. Finally, the user-supplied subroutine JAC computes the 
analytical Jacobian matrix J (= af/ay), where f = dy/&. 

The code has been arranged as much as possibl~in a “modular” fashion, with 
different subprograms performing different tasks. Hehce the number of 
subprograms is fairly large. However, this feature aids in both understanding and, 
if necessary, modifying the code. To enhance the user’s understanding of the 
code, it contains many comment statements, which are gfouped together in blocks 
and describe both d e  task to be performed next and theprocedure to be used. In 
addition, each subprogram includes detailed explanatory notes, which describe 
the function of the subprogram, the means of communication (i.e., call sequence 
andor common blocks), and the input and output variables. 

Each subprogram contains data type declarations for all variables in the routine. 
Such declarations are useful for debugging and provide a list of all variables that 
occur in a routine. This list is useful in overlay situations. For each data type the 
variables are usually listed in the following order: variables that are passed in the 
call sequence, variables appearing in common blocks, and local variables, in 
either alphabetical order or the order in which they appear in the call sequence and 
the common blocks. 
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TABLE 3.3.-DESCRTPTION OF SUBPROGRAMS USED IN LSODE 

I Subprogram 

Double- 
precision 
version 

LSODE 

INTDY 

STODE 

CFODE 

PREPJ 

I SOLSY 

EWSET 
VNORM 
SRCOM 

DlMACH 
XERRWV 
x s m  
XSETUN 
DGEFA 

DGESL 

DGBFA 

DGBSL 

DAXPY 

DSCAL 
DDOT 
IDAMAX 

Single- 
precision 
version 

LSODE 

tNmY 

STODE 

CFODE 

PREPJ 

SOLSY 

EWSET 
VNORM 
SRCOM 

R1 MACH 
XERRWV 
XSETF 
XSETUN 
SGEFA 

SGESL 

SGBFA 

SGBSL 

SAXPY 

SSCAL 
SDOT 
ISAMAX 

Description 

Main core integration routine. Checks legality of input, 
sets work array pointers. initializes work arrays. com- 
putes initial integration step size, manages solutions 
of ODE's. and returns to calling routine with solution 
and errors. 

Computes interpolated values of the specified derivative 
of the dependent variables. 

Advances the solution of the ODE's by one integration 
step. Also, compute.. step size and method order to be 
attempted on the next step. 

stants for local error test and step size and method order 
selection. 

subprogram call for its LU-decomposition or computes 
its inverse. 

iteration. 

Sets method coefficients for the solution and test con- 

Computes the iteration matrix and either manages the 

Manages solution of linear system arising from chord 

Sets the error weight vector. 
Computes weighted root-mean-square norm of a vector. 
Savcs and restores contents of common blocks LSooOl 

Computes unit roundoff of the computer. 
Handles error messages. 
Resets print control flag. 
Resets logical unit number for error messages. 
Performs LUdecomposition of a full matrix by Gaussian 

Solves a linear system of equations using a previously 

Performs LUdecomposition of a banded matnx by 

Solves a linear system of equations using a previously 

Forms the sum of one vector and another times a 

Scales a vector by a constant. 
Computes dot product of two vectors. 
Identifies vector component of maximum absolute value. 

and EHOOO 1. 

elimination. 

LU-decomposed full matrix. 

Gaussian elimination. 

LU-decomposed banded matrix. 

constant 



Calling 

IDAMAX or 
ISAMAX 

EWSET 

DSCAL or DAXPY or DDOT or 
SSCAL SAXPY SDOT 



3. Description of Code 

3.3 Internal Communication 

Communication between different subprograms is accomplished by means of 
both call sequences and the two common blocks EHOOOl and LSOOO1. The 
reason for using common blocks is to avoid lengthy call sequences, which can 
significantly deteriorate the efficiency of the program. However, common blocks 
are not used for variables whose dimensions are not known at compilation time. 
Instead, to both eliminate user adjustments to the code and minimize total storage 
requirements, dynamic dimensioning is used for such variables. 

The common blocks, if any, used by each subprogram are given in tables 3.4 
and 3.5 for the double- and single-precision versions, respectively. These tables 
also list all routines called and referenced (e.g., an external function) by each 
subprogram. Also, to facilitate use of LSODE in overlay situations, all routines 
that call and reference each subprogram are listed. Finally, for each subprogram 
the two tables give dummy procedure names (which are passed in call sequences 
and therefore have to be declared external in each calling and called subprogram) 
in brackets. 

The variables included in the two common blocks and their dimensions, if 
different from unity, are listed in table 3.6. The common blocks contain variables 
that are (1) local to any routine but whose values must be preserved between calls 
to that routine and (2) communicated between routines. The structure of the block 
LSOOOl is as follows: All real variables are listed first, then all integer variables. 
Within each group the variables are arranged in the following order: (1) those 
local to subroutine LSODE, (2) those local to subroutine STODE, and (3) those 
used for communication between routines. It must be pointed out that not all 
variables listed for a given common block are needed by each routine that uses it. 
For this reason some subprograms may use dummy names, which are not listed in 
table 3.6. 

To further assist in user understanding and modification of the code, we have 
included in table 3.6 the names of all subprograms that use each common block. 
For the same reason we provide in tables 3.7 and 3.8 complete descriptions of the 
variables in EHOOO1 and LSOOO1, respectively. Also given for each variable are 
the default or current value, if any, and the subprogram (or subprograms) where it 
is set or computed. The length L E N W  of the array WM in table 3.8 depends on 
the iteration technique and is given in table 3.9 for each legal value of MITER. 

3.4 Special Features 

The remainder of this chapter deals with the special features of the code and its 
built-in options. We also describe the procedure used to advance the solution by 
one step, the corrective actions taken in case of any difficulty, and step size and 
method order selection. In addition, we provide detailed flowcharts to explain the 
computational procedures. We conclude this chapter with a brief discussion of the 
error messages included in the code. 
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TABLE 3A.-ROUTINES 'WITH COMMON BLOCKS. SUBPROGRAMS, AND 
CALLING SUBPROGRAMS IN DOUBLECPRECISION 

VERSION OF LSODE 

LSODE 

CFODE 
DAXPY 

DDOT 
DGBFA 

DGBSL 
DGEFA 

DGESL 
DSCAL 
DIMACH 
EWSET 
I D m  
INTDY 
PREPJ 

IPJACI 
SOLSY 

[SLVS] 
SRCOM 
STODE 

WORM 

XERRW 
xsm - 

x s m  
BLOCK DATA 

Common blocks 
used 

LSOoOl 

EHOOOl 
EHo00l 
EHOOOl 
EHOOOl LSOOOl 

DlMACH EWSET 
F INTDY JAC 
PREPJ SOLSY 
STODE WORM 
XERRW 

DAXPY DSCAL 

DAXPY DDOT 
DAXPY DSCAL. 

DAXPY DDOT 

IDAMAX 

IDAMAX 

mRRw 
DGBFA DGEFA 

DGBSL DGESL 
F JAC WORM 

CFODE F JAC 
PREPJ SOLSY 
WORM 

Calling 
~Ubprograms 

STODE 
DGBFA DGBSL 

DGEFA DGESL 
DGBSL DGESL 
PREF'J 

SOLSY 
PREPJ 

SOLSY 
DGBFA DGEFA 
LSODE 
LSODE 
DGBFA DGEFA 
LSODE 
STODE 

STODE 

LSODE 

LSODE PREPJ 

LSODE INTDY 
STODE 



TABLE 3.5.-ROUTINES WITH COMMON BLOCKS. SUBPROGRAMS, AND 
CALLING SUBPROGRAMS IN SINGLE-PRECISION 

VERSION OF LSODE 

Subprogram 
[Dummy 

procedure name] 

LSODE 

CFODE 
EWSET 
INTDY 
ISAMAX 
PREPJ 

[PJACI 
R1 MACH 
SAXPY 

SDOT 
SGBFA 

SGBSL 
SGEFA 

SGESL 
SOLSY 

[SLVS] 
SRCOM 
SSCAL 
STODE 

VNORM 

XERRWV 
XSETF 
XSETUN 

Common blocks 
used 

LSOOOl 

LSOOOI 

LSOOOl 

LSOOOl 

EHOOOl LSOOOl 

LSOOOl 

EHOOO 1 
EHOOO 1 
EHOOOI 

Subprograms 
called and referenced 

EWSET F INTDY 
JAC PREPJ 
RIMACH SOLSY 
STODE VNORM 
XERRWV 

xF,RRwv 

F JAC SGBFA 
SGEFA VNORM 

ISAMAX SAXPY 

SAXPY SDOT 
ISAMAX SAXPY 

SAXPY SDOT 
SGBSL SGESL 

SSCAL 

SSCAL 

CFODE F JAC 
PREPJ SOLSY 
VNORhi 

Calling 
subprograms 

STODE 
LSODE 
LSODE 
SGBFA SGEFA 
STODE 

LSODE 
SGBFA SGBSL 

SGBSL SGESL 
PREPJ 

SGEFA SGESL 

SOLSY 
PREPJ 

SOLSY 
STODE 

SGBFA SGEFA 
LSODE 

LSODE PREPJ 

LSODE INTDY 
STODE 



common 
block 

EHOOOl 

LSOOOl 

Vuiabks (dimsion) subprosrum whae 
used 

MESFLG LUNIT 

Variable 

MESFLG 

LUNlT 

CONIT CRATE EL(13) 
ELCO(13. 12) HOLD RMAX 
TESC0(3,12) CCMAX EL0 
" M I N  HMXIHURC TN 
UROUND ILLIN INIT LYH 
LEWT LACm LSAVFLWM 
LIWM MXSTEP -NIL 
"NIL NTREP N S M T  
" IALTHIKlpLMAx 
ME0 NQNYH NSLP ICF 
IERF'J IERSL JCUR JSTART 
KFLAGL METH MITER 
MAXORD MAXCOR MSBP 
MXNCF N NQ NST NFJ3 
NJE NOU 

Dcdaiption 

Integer flag, which controls 
printing of tcrot messages from 
code and has following values 
and meanings: 
0 No amr message is printed. 
1 All emr messages ae printed. 

Logical unit number for mcssagts 
from code 

SRCOM XERRWV 
XSETF x s m  
BLOCK DATA' 

LSODE INTDY 
PREPJ SOFSY 
SRCOM STODE 
B m K  DATA' 

%ouble-ptecision version only. 

TABLE 3.7.-DESCRlPTION OF VARIABLES IN COMMON BLOCK EHOOO1. 
THEIR CURRJ34T VALUES. AND SUBPROGRMIS WHERE THEY ARE SET - 

cumnt 
V d U e  

1 

6 

subprognm-  
variabie is sct 

BLOCK DATA in 
double-precision version 

precision version 
and XERRW in single- 

BLOCK DATA in 
double-precision vasion 
and XERRW in single- 
precision version 
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TABLE 3.8.-DESCRPTION OF VARIABLES LN COMMON BLOCK LSOOO1. THEIR 
CURRENT VALUES. IF ANY, AND SUBPROGRAMS WHERE 

THEY ARE SET OR COMPUTED. 

Variable 

3ONlT 

:RATE 

?L 

ZLCO 

HOLD 

M A X  

mco 

3CMAX 

EL0 

H 

"b 

HMMb 

H u  

Description 

Empirical factor. 0.5/(NQ + I )  
used in convergence test (see 

Estimated convergence rate of 

Method coefficients in normal 

eq. (2.99)) 

iteration 

form [ QI} (see eq. (2.68)), for 
current method order 

Method coefficients in normal 
form for current method of 
orders 1 to MAXORD 

Step s i x  used on last success- 
ful step or attempted on last 
unsuccessful step 

Maximum factor by which step 
size will be increased when 
step size change is next 
considered 

Test coefficients for current 
method of orders 1 to 
MAXORD, used for testing 
convergence and local 
accuracy and selecting new 
step size and method order 

allowed in HxELO before 
Jacobian matrix is updated 

eq. (2.68)) for current method 
and current order 

Step size either being used on 
this step or to be attempted 
on next step 

Minimum absolute value of step 
size to be used on any step 

Inverse of maximum absolute 
value of step size to be used 
on any step 

Step size used on last success- 
ful step 

Maximum relative change 

Method coefficient Po (sw 

Current value, 
if any 

vmaliY IO; 104 for very 
first step size increasc 
for problem if no dif- 
ficulty encountered. 2 
after a failed converg- 
ence or local error test 

0.3 

0.0 

0.0 

Subprograms where 
variable is set or 

computed 

STODE 

STODE 

STODE 

CFODE 

STODE 

STODE 

CFODE 

B O D E  

STODE 

LSODE 
STODE 

B O D E  

STODE 

"Note that some variables appear in the table before they are defined. 
h f a u l t  value for this variable can be changed by the user, as described in table 4.6. 
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Variable 

RC 

TN 

UROUND 

ILLIN 

m 

LYH 

LEWT 

LACOR 

LSAVF 

LWM 

TABLE 3.8.--Continued. 

Description 

Relative change in HxELO 
since last updatc of Jacobian 
matrix 

Value of indcpcndcnt variable 
to which integrator cithw has 
successfully advanced solution 
or will do so aftcr next step 

Unit roundoff of computer 

Number of consecutive times 
LSODE has bccn called with 
illegal input for cumnt 
pcoblcm 

Integer flag (= 0 or 1) that 
dmotes if initialization of 
LSODE has bccn paformcd 
( IN lT=1)ornOt ( IN IT=O)  

"X(MAx0RD + 1) 

vector EWT of length N 

(of length N) containing local 
e m  on last succcssN step 

Base lddrca fa Nordsicck 
history m y  YH of length 

Base ddrcss for e m  weight 

Base address for array ACOR 

Base address for an array 
S A W  (of length N). used for 
tempwary skn'agc 

Base lddress f a  array WM (of 
length LENWMC). required 
for linear algebra associated 
with Jacobian md itaztion 
d C e S  

c u m t  value, 
if any 

21 

LWM + L E W  

LEWT + 2N 

LEWT+N 

LYH + 
"x(MAx0RD + 1) 

%e. length 
table 3.9. 

of the array WM depends on the iteration technique i 

subprograns whue 
variable is set or 

ComPuM 

STODE 

STODE 

DlMACH in 
doubk-precision 
version md 
RlMACH in 
single-peckion 
version 

BLOCK DATA 
(doubk-precision 
version) md 
LSODE (single- 
precision version). 
Updated in LSODE 
in both versions. 

LSODE 

Initialized in 

LSODE 

LSODE 

LSODE 

LSODE 

LSODE 

~~ 

I is given in 
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Variable 

LIWM 

MXSTEPb 

MXHNILb 

" N I L  

NTREP 

NSLAST 

NYH 

IALTH 

TABLE 3.8.4ontinued. 

Description 

Base address for integer work 

Maximum number of steps 
- Y M  

allowed on any one call to 
LSODE 

warning message that step 
s i x  is so small that TN + 
H = TN for next step is 
p n n d  

Maximum number of timcs that 

Number of times that this dif- 
ficulty with small step size 
has been encountered so far 
for problem 

Number of consecutive times an 
initialization or "first" call 
(see table 4.3) has been made 
to LSODE with same initial 
and final values for integra- 
tion interval 

Number of steps used for 
problem prior to current call 
to LSODE; used to check that 
the limit of MXSTEP steps is 
not exceeded 

Maximum number of ODE's to 
be solved for cumnt problem 
(This number is qua l  to the 
number of ODE's specified on 
first call to LSODE.) 

size and method order 
changes, with following 
valus and meanings: 
0 Sclcct optimal step size and 

method order. 
1 If NQU < W O R D ,  save 

v e d ~  4 (sec cqs. (2.76) and 
(2.1 11)) so that an orda 
incnasc can be considered 
on the next step. 

>I Neither of these two oper- 
ations is to be performed. 

Integer counter, related to step 

Cumnt value, 
if my 

1 

500 

10 

befault value for this variable can be changed by the user, as described in 
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subprograms when 
variable is set or 

computed 

LSODE 

LSODE 

LSODE 

LSODE 

[nitialized in 
BLOCK DATA 
(double-precision 
version) and 
LSODE (single- 
precision 
version). Updated 
in LSODE in 
both versions. 

LSODE 

LSODE 

STODE 

ble 4.6. 



TABLE 3.8.4ntinued. 

Variable Description 

Integer flag, related to Jacobian 
matrix update, with following 
values and meanings: 
0 Jacobian matrix is cithcs 

not needed a does not have 
c O b e U p d . t e s  

updated before comdor 
>o J 4 ; n  matrix must be 

ilcration. 
Maximum number of columns 

of Nordsicck history m y  
Integration method specif& on 
prtvious u l l  to LSODE 

Number of elemnts of 
Nonfsicck history array that 
arc changed by predictor 

Step numba when Jacobian 
matrix was last updated 

An intega flag. related to iter- 
ation amvergenct. with fol- 
lowing values and meanings: 
0 Solution converged. 
1 Convergence test failed ud 

Jacobian rmhix is not 
arrrmt. 

2 Convergence test failed and 
Jacobian matrix is either 
current or not needed. 

Integer flag. related to singulr- 
ity of iteration matrix, with 
following values and 
meanings: 
0 llefation m - x  w s  suc- 

assfully LUdecompoMd 
@mER = 1. 2.4, or 5 )  or 
invacad (MITER = 3) (set 
table 3.2) 

1 llentionmntrixwsfound 
to be singular. 

Integer flag, related to singular- 
ity of interation nubix modi- 
fied to BCUnmt for new 
(HxELo)forMrrER=3(set 
table 3.2). IERSL has fol- 
lowing vdues and munings: 
0 M o d i d  iteration matrix 
was successfully inverted 
and corrections computed. 

1 New matrix was found to be 
singular. 

Cumnt value, 
if any 

W O R D  + 1 

NQxNYH 

STODE 

STODE 

STODE 

STODE 

STODE 

STODE 

PREPJ 

SOLSY 
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TABLE 3.8.--Continued. 

Variable 

[CUR 

ISTART 

(FLAG 

W?TH 

MITER 

W O R D b  

UAXCOR 

MSBP 

Description 

Integer flag, related to state of 
Jacobian matrix, with fol- 
lowing values and meanings: 
0 Jacobian matrix is not cur- 

rent and may need to be 
updated later. 

1 Matrix is cumnt. 
Integer flag, used to communi- 

cate state of calculation to 
STODE. with following 
values and meanings: 
0 This is the first step for the 

I Continue n m a l  calculation 
problem. 

of problem. (This is the value 
returned by STODE to 
facilitate continuation.) 

-1 Take the next step with MW 
values for H, MAXORD. N, 
hiETH (see table 3.1). 
MITER (see table 3.2). 
and/or matrix parameters. 

A completion code from 
STODE with following values 
and meanings: 
0 step was sucassful. 

-1 Rtquestcd local accuracy in 
solution could not be 
achieved. 

-2 Repeated convergence test 
failures occurred. 

Number of columns of 

Integration method to be used 

Iteration technique to be used 

Maximum method order to be 

Nordsicxk array 

on next step 

on next step 

used for problem 

Maximum number of corrector 
iterations to be attempted on 
any one step 

Maximum number of steps for 
which same Jacobian matrix is 
used 

Current value, 
if any 

-I-__ 

NQ+ I 

12 for Adams-Moulton 
method and 5 for 
backward differcnt- 
iation formula method 

3 

a 

hbprograms where 
variable IS set or 

computed 

PREPJ 
STODE 

LSODE 
STODE 

STODE 

STODE 

LSODE 

LSODE 

LSODE 

LSODE 

B O D E  

Default value for this variable can be changed by the user. as described in table 4.6. 
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Variable 

MXNCF 

N 

NQ 

NST 

NFE 

N E  

NQU 

Dcmiption Cumnt value, 
if any 

Maximum number of corndoc 
convergcllce fiiluret allowed 
on any OM step 

Number of ODE'S to be SOlvtd 
on next step 

Method order eithcr being tried 
on this step or to be attempted 
on next step 

steps used so far for problem 
Total number of inlegdon 

Total number of daivrive 
evaluations requid so far for 
problem 

Total number of Jocobirn 
matrix evaluations (and 
iteration matrix LU- 
decompositions or inversions) 

Method ordcr uscd on last suc- 
required so far for probIern 

cessful step. 

TABLE 3.9.-LENGTH LENWM 
OF ARRAY WM IN TABLE 3.8 
FOR lTERATION "NIQW 

INCLUDED IN CODE 

MITER. I LENwMb I 

4.5 (2ML+MU+I)N+2  

iubprogrpns whac 
variable is set or 

COmpUtCd 

LSODE 

- 
STODE 

LSODE 
STODE 

LSODE 
STODE 

LSODE 
PREPJ 

STODE 

'See table 3.2 for description of 
MITER. 

% is the number of ODE'S and ML 
md MU a defined in table 33.  
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3. Description of Code 

The main routine, LSODE, controls the integration and serves as an interface 
between the calling subprogram and the rest of the package. A flowchart of this 
subroutine is given in figure 3.2. In this figure ITASK and ISTATE are user- 
specified integers that specify, respectively, the task to be performed and the state 
of the calculation, that is, if the call to LSODE is the first one for the problem or a 
continuation; if the latter, ISTATE further indicates if the continuation is a normal 
one or if the user has changed one or more parameters since the last call to 
LSODE (see chapter 4 for details). On return from LSODE the value of ISTATE 
indicates if the integration was performed successfully, and if not, the reason for 
failure. The integer JSTART is an internally defined variable used for 
communicating the state of the calculation with the routine STODE. The variables 
T (= C), H, and X are, respectively, the independent variable, the step size to be 
attempted on the next step, and the numerical solution vector. TOUT is the 6 
value at which the solution is next required. Finally, TCRIT is the 5 value that 
the integrator must not overshoot. This option is useful if a singularity exists at or 
beyond TCRIT and is discussed further in chapter 4. 

The subroutine STODE advances the numerical solution to the ODE’S by a 
single integration step [5,-1,E,,]. It also computes the method order and step size 
to be attempted on the next step. The efficiency of the integration procedure is 
increased by saving the solution history, which is required by the multistep 
methods used in the code, in the form suggested by Nordsieck (ref. 33). The 
Nx(q + 1) Nordsieck history matrix z,-l at cn-l contains the numerical solution 
L - 1  and the q scaled derivatives hiX$?~/j!  0’ = 1, ...,q), where h, (= 5, - E,,-1) and 
q are, respectively, the current step size and method order and 9) = djxJd5J. 

The flowchart of STODE is presented in figure 3.3. In this figure NCF is the 
number of corrector convergence failures on the current step, KFLAG is an 
internally defined integer used for communication with LSODE, NQ (= q) is the 
method order to be attempted on the current step, and the integer counter IALTH 
indicates how many more steps are to be taken with the current step size and 
method order. The (NQ + 1)-dimensional vector contains the method coefficients 
and depends on both the integration method and the method order; 40 is the zeroth 
component of 1 (see eq. (2.68)). The matrix ziol is the predicted Nordsieck 
history matrix at E,,, and the NxN iteration matrix P is given by equation (2.25). 
The variable R is the ratio of the step size to be attempted next to its current 
value, M A X  is the maximum R allowed when a step size change is next 
considered, and HMIN and HMAX are user-supplied minimum and maximum 
absolute values for the step size to be tried on any step. The ratios RHDN, 
RHSM, and RHUP are factors by which the step size can be increased if the new 
method order is NQ - 1, NQ (the current value), and NQ + 1, respectively. 
Finally, NQMAX is the maximum method order that may be attempted on any 
step, and the vector E, (=h,%, - h y lo1 )  is proportional to the local truncation 
error vector at 5, (see eqs. (2.87) an375.89)). 
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3.4 Special Features 

3.4.1 Initial Step Size Calculation 

An important feature of LSODE is that it will compute the step size ho to be 
attempted on the first step if the user does not provide a value for it. The 
calculation procedure attempts to produce an ho such that the numerical solution 
X1 generated at the first internal mesh p i n t  51 will satisfy the local error test. 
Now with either solution technique the code starts the integration with a first- 
order method. Hence the asymptotic local truncation error d j , ~  in the ith solution 
component at 51 will be equal to (1/2)h12jii(51) for both the Ah4 and BDF methods 
of order 1. Here hl is the step size successfully used on the first step, andy'i(s1) is 
the second derivative of the ith component of y at 51. To pass the local error test, 
equation (2.91), the weighted local error vector, that is, {~,,J/EWTL~}, must 
satisfy the inequality 

where EWTil is the ith component of the error weight vector for the first step (see 
eq. (2.90)): 

EWT,,~ = R T O L , I ~ , ~ I  + ATOL,. (3.3) 

In this equation RTOLi and ATOLi are, respectively, the user-supplied local 
relative and absolute error tolerances for the ith solution component, YLO is the ith 
solution component at 50, and the vertical bars 1.1 denote absolute value. 

The test given by equation (3.2) cannot be applied at the start of the step [b, 511 
because y(E,l) is not known. We therefore modify this test by using y(50) as 
follows: -We first define a weighted principal error function at order l,-$, - with 
element $i given by 

$. =--I-, 1 Y.(50) 
' 2 y. (3.4) 

where 

y. = Em,, /TOL, (3.5) 
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Start 

Check legality of ISTATE 
and ITASK values 

t 

Compute index of component 
with largest magnitude in 
weighted local error; set T, 
all optional output, and 
ISTATE c 0 to indicate failure 
to calling program 

- 
Yes (Not first call; 
normal continuation) 

(= 1 : First call for problem 
= 3: Not first call; user has changed 

one or more parameters) 

Process and check legality of all input: 
mandatory, optional, and modified parameters 

Set default values for all optional parameters 
not set by user 

t 
Set real work array pointers and check adequacy of 
lengths specified by user for real and integer work arrays 

Return 
Call STODE to 

t advance solution 

Form initial history array - t A 
Set flag JSTART = 
-1 to indicate to 
STODE that some 
parameters have 
been changed by 
user; make 
necessary changes 
to real work array 

I Y If not specified by user, compute step 
size to be attempted on first step 

Compute unit roundoff of computer; set JSTART = 0 to 
indicate to STODE this is first call for problem; initialize 
optional output parameters; call F for derivatives of initial 
conditions and EWSET for error weight vector 

to calling 

(ITASK = 
1,3, or 4) 



Call EWSET 
for error weight 
vector 

Yes 

If necessary, adjust step 
size H to hit TCRlT and 

indicate to STODE that 
H has been changed 

Set JSTART = -2 to 

+ Yes 

within 

I Yes 

1 Yes I 
IS T = 

within 

No Y \ T-TOUT / 
(ITASK = 3) I t 

VI \o Figure 3B.-Flowchart of subroutine LSODE. 



= 0 (First call 

I 
for problem) 

I Set new H = I max {HMIN, min (H x R, 
4 

If NQ increased, compute 
scaled (NQ + 1) th-derivative 
of and augment r,! by 
column containing this 
derivative vector 

RMAX = 1 d, IALTH = 2, and 
flag to indicate that Jacobian 
matrix J must be updated. 
Call CFODE to compute 
method coefficients @for 
current integration method 
of all orders; set C for current 

t = -1 : Some parameters 
have been chang- initialize all variables; set I I Set new NQ corresaond- I 

I I I  RHDN, RHSM, and RHUP I ing to maximum ratio ed by user 
= -2: Step size H has 

1 beenchanged I I 

b! 
> 0 (Not first 
call; normal 
continuation) 

A Has He,-, 

SODE)~ c 
If JSTART = -1 : set flag to 
force J update and IALTH = 
2, if it is equal to 1. Also, as 
needed, call CFODE to 
compute {i} for current 
integration method of all 
orders; adjust NQ, and set 1 
for current NQ. For both 
JSTART, if necessary, adjust 
H and history array z,-1 

( Return? 

Set IALTH = NQ + 1 
and RMAX= 10 

Compute estimated 
local error in L; save H, 
so caller can change it 
on next step; set 
JSTART = 1 

I Set IALTH = 3 1 
Compute step size ratios I RHDN. RHSM. and RHUPI 

IS )-I if NQ = 1, set RHDN = 0;  if’ 
R 2 1.1 NQ = NQMAX. set RHUP= v 0;  set R = m a i  (RHDN, I RHSM. RHUP) 

changed bymore 
Set new H = max (R x H, HMIN), 
rescale q-1 ,  and set IALTH = NQ + 1 f& J update 30 percent or have s i n c e 3  20 steps 

been taken with 
same J 

+ 
Set R = 0.25 and flag to indicate J must be updated 

t 

J 
decreased, 



iteration matrix P, and either 
computes or calls DGEFA or 
DGBFA to LU-decompose P 

At each iteration m, either compute, or 
call SOLSY for, incremental corrector [ml test failures or any 
error. Compute new solution estimate & 
and corrector errordd 

with H = HMlN 

Save H to allow 
caller to change it 

RMAX = 2, and recover t 
Set KFLAG = -1 to 
indicate to LSODE - repeated local error - 
test failures or any 
with H = HMlN 

RMAX = 2, and recover zn-l 

via RHSM and RHDN; set R = min (R, 1); 

Figure 3.3.4lowchart of subroutine STODE. 



3. Description of Code 

and the scalar tolerance quantity TOL, which is to be determined, is such that Wi is 
a suitable weight for Yi, the ith component of 1. The step size and the local error 
are then together required to satisfy the inequality 

where 11-11 represents a suitable norm. We have used a different symbol for the 
initial step size than in equation (3.2) to indicate that this quantity is not known 
and must be computed. Because a first-order method will be used on this step, for 
a sufficiently small step size the numerical approximation 21 at 51 will not be 
significantly different from y(b), and use of the latter quantity is therefore 
reasonable. The rationale for h o d u c i n g  TOL will become apparent shortly. 

The second derivative y(50) is not generally available, and so the following 
empirical procedure is use3 to estimate it. We consider the dominant eigenvalue 
(= A) of the ODE system and model this component with the simple scalar ODE 

where I h I >> 1. For this problem, I$ = (1/2)y/W = (1/2)h2y/W. Now, if TOL is 
chosen such that y/W is of order unity, I$ can be approximated by (y/W2 
[= (Ay/W)2],which is known. For the scalar ODE this condition is obtained by 
setting TOL = RTOL and ATOL = 0 (see eqs. (3.3) and (3.5)). The quantity y/W 
may be regarded as the weighted principal error function for a “zeroth order” 
method. We use this empirical rule to replace each @ j  by ( yJWj)2 so that equation 
(3.6) can be written as 

N 

h i  [(&,O/yr] 1 I TOL, 

where 3,o [=A(&, Eo)] is the first derivative of the ith component at 50. Because 
the weighted root-mean-square (rms) norm is used in the local error test, equa- 
tion (3.2), for convenience, we use the following criterion for initial step size 
control: 

Equations (3.5) and (3.9) together show that ho (= 1 / m L )  is a decreasing 
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3.4 Special Features 
function of TOL. To produce a reliable estimate for h~ we therefore select a TOL 
erring on the high side. A suitable value is given by 

TOL = max(RTOLi). (3.10) 
i 

This expression cannot be used if all RTOLi = 0. In this case an appropriate value 
for TOL is given by 

/ \ 

ATOL, 
TOL = maxi - for q,o f 0. (3.1 1) 

In any case the value of TOL is constrained to be within reasonable bounds as 
follows: 

loou I TOL I (3.12) 

where u is the unit roundoff of the computer or the machine epsilon (ref. 13). It is 
the smallest positive number such that 1 + u > 1. 

Equation (3.9) cannot be used to compute ho if either each fi,o is equal to zero 
or the norm is very small. To produce a reasonable ho in such an event, we 
include the independent variable 5 as the zeroth component yo of - y and modify 
equation (3.9) as follows: 

(3.13) 

where we have used the fact that y o  = 1. To be consistent with the other Wi, 
which are of order Yio, the weight Wo should be of order 50; however, we use 

(3.14) 

to ensure that it is not equal to zero. In equation (3.14), &,utl is either the first (or 
only) value of the independent variable at which the solution is required or, as 
discussed in chapter 4, a value that gives both the direction of integration (i-e., 
increasing or decreasing 5) and an approximate scale of the problem. If the 
quantity &,ut, 1 - 50 is not significantly different fiom zero, an error exit occurs. 
Equation (3.13) gives a reasonable value for ho (= Wo m L )  if fo = 0. 
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3. Description of Code 

The calculation procedure used for ho is therefore given by 

TOL 
N 2 

i=l 
N 

(3.15) 

Several restrictions apply to the step size given by equation (3.15). It is not 
allowed to be greater than the difference Icout,l - 501. Hence 

In addition, if the user has supplied a value for h,,, the maximum step size to be 
used on any step, ho is restricted to 

ho t- min(ho,h,,). (3.17) 

However, no comparison of ho is made with hmin. the user-supplied minimum 
step size to be used on any step, so that ho is allowed to be less than hmin. Finally 
the sign of ho is adjusted to reflect the direction of integration. 

3.4.2 Switching Methods 

Another useful feature of LSODE is that different integration methods and/or 
different iteration techniques can be used in different subintervals of the problem. 
This option is useful when the problem changes character and is stiff in some 
regimes and nonstiff in others as, for example, in combustion chemistry. Indeed, 
because stiff problems are usually characterized by a nonstiff initial “transient” 
region, the ability to switch integration methods is a desirable feature of any ODE 
package. During the course of solving a problem the method flag MF may be 
changed both whenever and as many times as desired. As described in chapter 4 
changing methods is quite straightforward. 

3.4.3 Excessive Accuracy Specification Test 

At each integration step Cn] LSODE checks that the user has not requested 
too much accuracy for the precision of the machine. This condition is said to 
occur if the criterion 

? 
di,n < uq,n (3.18) 

is true for all N solution components. In equation (3.18), di,n is the estimated 
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3.4 Special Features 

local truncation error in Yi,m the ith solution component at cn. Now the numerical 
solution X at Z& is judged to be sufficiently accurate if the following inequality is 
satisfied (see chapter 2): 

(2.9 1) 

The quantity EWTb is the ith component of the error weight vector, equa- 
tion (2.90), for this step. Equations (3.18) and (2.91) together imply that if the 
quantity TOLSF (tolerance scale factor) defined as 

(3.19) 

is greater than 1, the test for excessive accuracy requirement is passed. This test is 
quite inexpensive, but it can be applied only after the solution at c n  is produced. It 
is, however, wasteful to generate a solution only to discover that excessive 
accuracy has been required, either because TOLSF is greater than 1 or because 
repeated convergence failures or error test failures occur. The computational cost 
can be significant if any difliculty is encountered because of the corrective 
actions-described later in this section-performed by the code. Even if the step 
is successful, the solution is not meaningful because of roundoff errors. 

To avoid these difficulties, the calculation procedure for TOLSF uses L-1, 
which is known, so that the test can be applied at the start of each step, including 
the first. Thus the code ascertains inexpensively if excessive accuracy has been 
requested before attempting to advance the solution by the next integration step. 
The value of TOLSF may be used to adjust the local error tolerances so that this 
condition does not recur. For example, scaling up the {RTOLi} and {ATOLi} 
values by a minimum factor of TOLSF should produce satisfactory values for the 
local error tolerances if the same type of error control is to be performed (see 
chapter 4 for details). 

3.4.4 Calculation of Method Coefficients 

The integration method coefficients and test constants used to check corrector 
convergence and local accuracy, as well as to select method order and step size, 
are computed in subroutine CFODE. The calculation procedure uses the generating 
polynomials discussed by Hindmarsh (refs. 21 and 22) to increase portability of 
the code. The coefficients corresponding to all method orders are computed and 
stored both at the start of the problem and whenever the user changes the 
integration method. This feature avoids the computational cost associated with 
recomputing these quantities whenever the method order is changed. 
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3. Description of Code 

3.4.5 Numerical Jacobians 

If Newton-Raphson (NR) or Jacobi-Newton (JN) iteration is selected, the code 
will generate elements of the Jacobian matrix by finite-difference approximations 
if the user chooses not to provide an analytical Jacobian. For the iteration 
procedures corresponding to MITER = 2 (full Jacobian matrix) and 5 ("banded" 
Jacobian matrix, Le., a matrix with many zero entries and all nonzero elements 
concentrated near the main diagonal), the element .Tu (= &/&?) at cn is estimated 
by using the approximation 

fi ({do: + 6 k j A Y j }  >tn) -fi ({e:} 9 k n )  

J.. z= , i = l ,  ..., N ,  (3.20) 
B -  AYj 

where Y[$:n is the kth component of YLol, Fkj is the Kronecker symbol, 

kJ = { O >  1, k =  k # j  j ,  
(3.2 1) 

and the increment A q  in the jth solution component is selected as follows: The 
standard choice for AYj is 

(3.22) 

This equation cannot be used if is either equal to zero or very small. 
Therefore an alternative value, based on noise level, is deduced as follows: Now 
the error in eachfi due to roundoff is of order ulfil. Hence in replacing afi//ayi by 
the difference quotient, equation (3.20), the resulting element Ji/ has an error of 
order uKl/rj, where for clarity in presentation we have replaced Ayi by 5. Finally 
because the method coefficient 00 (= 40) is of order unity (see tables 2.1 and 2.2), 
the error FPo in the element Po of the iteration matrix P, equation (2.25), is 
approximately 

If we introduce the N-dimensional column vector s, with element sj defined as 

s - = l / r . ,  j =1 ,  ..., N, (3.24) 
J J  

the matrix FP containing the errors { FPu} is given by 
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3.4 Special Features 

6P = IhI u I f l sT ,  (325) 

where I f I is an N-dimensional column vector containing the absolute values of the 
(i = 1, ...m and the superscript Tindicates transpose. A suitable increment 9 is 

obtained by bounding la, as discussed next. 
To be consistent with the corrector convergence test, equation (2.98), and the 

local error test, equation (2.91), we use the weighted rms norm, which for an 
arbitrary N-dimensional column vector ~1 is given by 

If re introduce th 

2 N 

diagonal matrix D of order N, with element Dii given by 

Dii = l/EWi, i = 1, ..., N, (327) 

it is easily verified that 

= llDZll,/J;;. (3.28) 

where 11.11, is the Euclidean norm, defined for as 

Now the norm of 6P is given by 

where 

because 6P is of rank 1. Hence 

(3.30) 

(3.3 1) 
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3. Description of Code 

which can be rewritten as 

(3.32) 

To establish the maximum allowable error in P, we consider the linear system 
PL = b, which is the form of the equation to be solved at each Newton iteration, 
equation (2.24). To first order, the error 6~ in x due to the error 6P in P is given by 
(e.g., ref. 13) 

(3.33) 

The norm P-' I is not known but is expected to be of order unity because P + I, 
the identity matrix of order N ,  when h + 0 and P - -hPoJ when h -+ 00 (see 
eq. (2.25)). Therefore, a reasonable strategy is to bound I 6P I alone by selecting a 
suitably small value for the relative error that can be tolerated in the Newton 
correction vector. By using a value of 0.1 percent for this error, we obtain from 
equations (3.32) and (3.33) 

(3.34) 

For additional safety ro is reset to 1 if it is equal to zero. Finally the increment A 5  
in thejth variable used to estimate the { J g }  is given by 
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3.4 Special Features 

(3.35) A$ = max JII q, Io EWT~,,). ( I  I 
For a full Jacobian matrix the above procedure will require (N + 1) derivative 

evaluations and can therefore become much more expensive than the use of an 
analytical Jacobian, especially for large N. Now fao1, is required by the 
corrector (see eq. (2.36)), irrespective of the iteration technique. Hence the use of 
MITER = 2 requires the evaluation of only N additional derivatives. 

In generating the finitedifference banded Jacobian matrix (MITER = 5) the 
code exploits the bandedness of the matrix for efficiency. The number of additional 
derivative evaluations required to form the Jacobian matrix is only ML + MU + 1, 
where ML and MU are, respectively, the lower and upper half-bandwidths of the 
Jacobian matrix. 

If JN iteration with MITER = 3 is used, the N diagonal elements Jii (i = 1, ...m 
are estimated by using the approximation 

, i =  1 ,..., N, (3.36) J.. p 
I 1  A$ 

which requires only one additional derivative evaluation. The increment AYi is 
selected as follows: Now equation (2.17) shows that if functional iteration were 
used, the correction ~ 1 1  - 1$01 that would be obtained on the first iteration is 
equal to the quantity PO - g a o l ) ,  where the vector function - g is given by equa- 
tion (2.16). The increment vector AX is taken to be 10 percent of this correction: 

A q  = 0.1 pogi(xF1), i = 1, ..., N. (3.37) 

Hence the diagonal matrix approximation, equation (3.36), resembles a directional 
derivative off taken in the same direction as the correction vector above. Also, 
this approximation gives the correct Jacobian if it is a 

the magnitude of AYiis less than 0.lupo EWTi, that is, 
set equal to zero. 

3.4.6 Solution of Linear System of Equations 

If NR iteration is used for the problem, a linear system of the form PL = h must 
be solved for the correction vector 5 at each iteration (see eq. (2.24)). The linear 
algebra necessary to solve this equation is performed by the LU method (e.g., 
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3. Description of Code 

refs. 5 and 36), rather than by explicitly inverting the iteration matrix, which will 
require prohibitive amounts of computer time (ref. 13). In the LU method the 
iteration matrix is factored into the product of two triangular matrices L and U. 
Solving equation (2.24) then requires the fairly simple solution of two triangular 
linear systems in succession. 

LSODE also includes special procedures for the LU-decomposition of the 
iteration matrix and the solution of equation (2.24) when the matrix is known to 
be banded. Compared to a full matrix, it is significantly less expensive to form a 
banded matrix, perform its LU-decomposition, and solve the linear system of 
equations (refs. 5,25,26, and 36). An important advantage of LU-decomposing a 
banded matrix over inverting it is that, besides being faster, the triangular factors 
L and U lie within nearly the same bands as the original matrix, whereas the 
inverse is a full matrix (ref. 36). This feature makes the computation of the 
correction vector significantly faster with the LU method than by premultiplying 
the right-hand side of equation (2.24) with the inverse of the matrix. 

If MITER = 3 is used for the problem, the resulting iteration matrix is diagonal 
(see eq. (3.36)). Its inverse can therefore be obtained trivially and is used to 
compute the corrections. 

3.4.7 Jacobian Matrix Update 

The difficulty with Newton-Raphson iteration is the computational cost 
associated with forming the Jacobian matrix and the linear algebra required to 
solve for the correction vector at each iteration. However, as discussed in chap- 
ter 2, the iteration matrix need not be very accurate. This fact is exploited to 
reduce the computational work associated with linear algebra by not updating P at 
every iteration. For additional savings it is updated only when the iteration does 
not converge. Hence the iteration matrix is only accurate enough for the solution 
to converge, and the same matrix may be used over several steps. It is also 
updated if three or more error test failures occur on any step. Now P may be 
altered if the coefficient hPo is changed (see eq. (2.25)) because a new step size 
and/or method order is selected. In order to minimize convergence failures 
caused by an inaccurate P, the code updates P and performs its LU-decomposition 
(or inversion if MITER = 3) if hPo has changed by more than 30 percent since the 
last update of P. In addition, for MITER = 3, because P-' can be generated 
inexpensively, it is first modified to account for any change in hPo since its last 
update, before the corrections are computed. The reevaluation and LU- 
decomposition or inversion are also done whenever the user changes any input 
parameter required by the code. Finally the same P is used for a maximum 
number of 20 steps, after which it is reevaluated and LU-decomposed or inverted. 

3.4.8 Corrector Iteration Convergence and Corrective Actions 

Irrespective of the solution method and the corrector iteration technique, the 
maximum number of corrector iterations attempted on any step is set equal to 3, 
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3.4 Special Features 

based on experience that a larger number increases the computational cost without 
a corresponding increase in the probability of successful convergence (refs. 19, 
21,22, and 25). In addition to performing the convergence test, equation (2.99), 
at each iteration, STODE examines the value of the convergence rate c,, equa- 
tion (2.102). If c, is greater than l, the iteration is clearly not converging. 
STODE exploits this fact by abandoning the iteration if c, is greater than 2 after 
the second iteration. 

If convergence is not obtained because either (1) equation (2.99) is not satisfied 
after three iterations or (2) c, > 2 after the second iteration, the following 
corrective actions are taken: For NR and JN iterations, if P is not current, it is 
updated at y =&.'I and LU-decomposed or inverted, and the step is retried with 
the same st.?, size. However, if either P is current or functional iteration is used, a 
counter of convergence failures on the current step is increased by 1, the step size 
is reduced by a factor of 4, and the solution is attempted with the new step size. 
The same corrective actions are taken in the event of a singular iteration matrix. 

This procedure is repeated until either convergence is obtained or the integration 
is abandoned because either (1) 10 convergence failures have occurred or (2) the 
step size has been reduced below a user-supplied minimum value h-. In the 
event of an error exit the index of the component with largest magnitude in the 
weighted local error vector is returned to the subprogram calling LSODE. 

3.4.9 Local Truncation Error Test and Corrective Actions 

After successful convergence STODE performs the local truncation error test, 
equation (2.96). If the error test fails, the step size is reduced and/or the method 
order is reduced by 1 by using the procedures outlined in section 3.4.10, and the 
step is retried. After two consecutive failures the step size is reduced by at least a 
factor of 5, and the step is retried with either the same or a reduced order. After 
three or more failures it is assumed that the derivatives that have accumulated in 
the Nordsieck history matrix have errors of the wrong order. Therefore the first 
derivative is recomputed and the method order is set equal to 1 if it is greater than 
1. Then the step size is reduced by a factor of 10, the iteration matrix is formed 
and either LU-decomposed or inverted, and the step is retried with a new z,-i that 
is constructed from L-1 and y,1= f&-1). 

This procedure is repeated until either the error test is passed or an error exit is 
taken because either (1) 10 error test failures have occurred or (2) the step size has 
been reduced below h ~ , , .  In the event of an error exit LSODE returns the index of 
the component with the largest magnitude in the weighted local error vector to the 
calling subprogram. 

If the accuracy test is passed, the step is accepted as successful, and the 
Nordsieck history matrix z, and the estimated local truncation error vector & at & 
are computed by using equations (2.76) and (2.89), respectively. Irrespective of 
whether the step was successful or not, STODE saves the value of the most recent 
step size attempted on the step so that the user may, if desired, change it. 
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3.4.10 Step Size and Method Order Selection 

In addition to advancing the solution STODE periodically computes the method 
order and step size that together maximize efficiency while maintaining prescribed 
accuracy. As discussed in chapter 2, this result is accomplished by selecting the 
method order that maximizes step size. To simplify the algorithm, the code 
considers only the three method orders 4 - 1, 4, and 4 + 1, where 4 is the current 
method order. For each method order the step size that will satisfy exactly the 
local error bound is computed by assuming that the highest derivative remains 
constant. The resulting step size ratios (defined as the ratio of the step size to be 
attempted on the next step to the current value h,) are given by equations (2.107), 
(2.103), and (2.1 12), respectively, for method orders 4 - 1, q, and 4 + 1. These 
equations are, however, modified by using certain safety factors (1) to produce a 
smaller step size than the value that satisfies the error bound exactly, because the 
error estimates are not exact and the highest derivative is not usually constant, and 
(2) to bias the order-changing decision in favor of not changing the order at all, 
because any change in order requires additional work, and then in favor of 
decreasing the order, because an order reduction results in less work per subsequent 
step than an order increase. The formulas used in STODE to calculate the step 

I 
(3.38) - 

rdown - r 1 1’ 

I L J 

L I 
1 

1’ r =  I .  up r 1 

(3.39) 

(3.40) 

In equations (3.38) to (3.40) the factors 1.2, 1.3, 1.4, and are strictly 
empirical. The subscripts “down,” “same,” and “up” indicate, respectively, that 
the method order is to be reduced by 1, left unchanged, and increased by 1. 

To prevent an order increase either after a failed step or when 4 = qmX, the 



3.4 Special Features 
maximum order allowed for the solution method, rup is set equal to zero in such 
cases. Similarly, if q = 1, rdom is set equal to zero to avoid an order reduction. 

The maximum step size ratio r = max (rdom, rsm, rup) and the corresponding 
method order are selected to be attempted on the next step if r 2 1.1 after a 
successful step. Changes in both step size and method order are rejected if the 
step size increase is less than 10 percent because it is not considered large enough 
to justify the computational cost required by either change (refs. 10 and 22). After 
a failed step the method order is decreased if ?-do, > rsm; however, r = max 
(rdom, r-) is reset to 1 if it is greater than 1. Several additional tests, given 
next, are performed on r, if r 2 1.1 after a successful step, but irrespective of the 
value of r after a failed step, before the step size h' (= rh,) to be attempted next is 
selected. 

If the maximum step size hmax to be attempted on any step has been specified 
by the user, r is restricted to 

r t min( r , ~ ) .  (3.41) 

Similarly if the user has specified a minimum step size h- that may be attempted 
on any step, r is restricted to 

r t max ( r,- h c ) .  

Finally r must satisfy the inequality 

(3.42) 

(3.43) 

where the variable rmax is normally set equal to 10. However, for the very first 
step size increase for the problem, if no convergence or error test failure has 
occurred, rmax is set equal to lo4 to compensate for the small step size attempted 
on the first step. For the first step size increase following either a corrector 
convergence failure or a truncation error test failure, rmax is set equal to 2 to 
inhibit a recurrence of the failure. 

To avoid numerical instability caused by frequent changes in the step size, 
method order and step size changes are attempted only after S successful steps 
with the same method order and step size, where S is normally set equal to 4 + 1. 
However, if an unsuccessful step occurs, this rule is disregarded and the step size 
andlor the method order may be reduced. Following a failed error test or a failed 
convergence test with either functional iteration or NR and JN iterations if P is 
current, S is set equal to 4 + 1. If three or more error test failures occur on any one 
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step, S is set equal to 5 even though the method order is reduced to 1. Finally 
following a step for which step size and method order changes are rejected 
because r < 1.1, S is set equal to 3. 

After every S - 1 successful steps STODE saves the vector e, if q < qma, in 
order to estimate Ve, which is required to compute rup (see eqs. (2.109) to 
(2.112)). To minimize storage requirements, en is saved as the qmaxth, that is, the 
last, column of 2,. 

3.5 Error Messages 

The code contains many error messages-too numerous to list here. Every 
input parameter is tested for legality and consistency with the other input variables. 
If an illegal input parameter is discovered, a detailed message is printed. Each 
error message is self-explanatory and complete. It not only describes the mistake 
but in some instances tells the user how to fix the problem. Any difficulty 
encountered during execution will result in an error exit. A message giving the 
reason for termination will also be printed. If the computation stops prematurely, 
the user should look for the error message near the end of the output file 
corresponding to the logical unit number LUNIT (see chapter 4). 



Chapter 4 
Description of Code Usage 

To use the LSODE package, the following subprograms must be provided: (1) a 
routine that manages the calls to subroutine LSODE, (2) a routine that computes 
the derivatives c f i  = dyi/&} for given vdues of the independent variable 6 and the 
solution vector y , and (3) if an analytical Jacobian matrix J (= af/ay) is required 
by the corrector%eration technique selected by the user, a routine that computes 
the elements of this matrix. In addition, some modifications, discussed below, to 
the LSODE source itself may be necessary. 

4.1 Code Installation 

4.1.1 BLOCK DATA Variables 

The user may wish to reset the values for the integer variables MESFLG (cur- 
rently l) and LUNIT (currently 6), which are both set either in the BLOCK DATA 
module (double-precision version) or in subroutine XERRWV (single-precision 
version). The variable MESFLG controls the printing of error messages from the 
code, and LUNIT is the logical unit number for such output (see table 3.7). 
Setting MESFLG = 0 will switch off all output from the code and therefore is not 
recommended. 

The single-precision version of the code loads initial values for the common 
block LSOOOl variables ILLIN and NTREP (see table 3.8) through a DATA state- 
ment in subroutine LSODE. The same procedure is used in subroutine XERRWV 
for the common block EHOOOl variables MESFLG and LUNIT (see table 3.7). 
However, on some computer systems initial values for common block elements 
cannot be defined by means of DATA statements outside a BLOCK DATA 
subprogram. In this case the user must provide a separate BLOCK DATA 
subprogram, to which the two DATA statements from subroutines LSODE and 
XERRWV must be moved. The BLOCK DATA subprogram must also contain 
the two common blocks EHOOOl and LSOOOl (see table 3.6). 
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4.1.2 Modifying Subroutine XERRWV 

The subroutine XEFGXWV, which prints error messages from the code, is 
machine and language dependent. Therefore the data type declaration for the 
argument MSG, which is a Hollerith literal or integer array containing the message 
to be printed, may have to be changed. The number of Hollerith characters stored 
per word is assumed to be 4, and the value of NMES, which is the length of, that 
is, number of characters in, MSG is assumed to be a multiple of 4, and at most 60. 
However, the routine describes the necessary modifications for several machine 
environments. In particular, the user must change a DATA statement and the 
format of statement number 10. The routine assumes that all errors are either (1) 
recoverable, in which case control returns to the calling subprogram, or (2) fatal, 
in which case the run IS aborted by passing control to the statement STOP, which 
may be machine dependent. If a different run-abort command is needed, the line 
following statement number 100, which is located near the end of the routine, 
must be changed. 

4.2 Call Sequence 

The call sequence to subroutine LSODE is as follows: 

CALL LSODE (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK, ISTATE, 
IOPT, RWORK, LRW, IWORK, LIW, JAC, MF) 

All arguments in  the call sequence are used on input, but only Y, T, ISTATE, 
RWORK, and IWORK are used on output. Also, Y and T are set only on the first 
call to LSODE; the other arguments may, however, have to be reset on subsequent 
calls. The arguments to LSODE are defined as follows: 

F The name of the user-supplied subroutine that computes the derivatives 
of the dependent variables with respect to the independent variable. 
This name must be declared EXTERNAL in the subprogram calling 
LSODE. The requirements of subroutine F are described in section 
4.3. 

NEQ The number of first-order ordinary differential equations (ODE’s) to 
be solved. (The code allows the user to decrease the value of NEQ 
during the course of solving the problem. This option is useful if 
some variables can be discarded as the solution evolves as, for example, 
in chemical kinetics problems for which the reaction mechanism is 
reduced dynamically.) As discussed later, NEQ can be specified as an 
array. In this case NEQ(1) must give the number of ODE’s to be 
solved, and the subprogram calling LSODE must contain a dimension 
statement for NEQ. 
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Y 

T 

TOUT 

ITOL 

4.2 Call Sequence 

A vector of length NEQ (or more) containing the dependent variables. 
The subprogram calling LSODE must include a dimension statement 
for Y if it contains more than one component. On the first call to 
LSODE this vector must be set equal to the vector of initial values of 
the dependent variables. Upon every return from LSODE, Y is the 
solution vector either at the desired value (TOUT or TCRIT, see 
below) of the independent variable or that generated at the end of the 
previous integration step. In case of an error exit Y contains the 
solution at the last step successfully completed by the integrator. 

The independent variable. On the first call to LSODE, T must give 
the initial value of this variable. On every rehun fi-om LSODE, T is 
either the independent variable value (TOUT or TCRIT, see below) at 
which the solution is desired or the independent variable value to 
which the numerical solution was advanced on the previous integration 
step. If an error exit occurs, T gives the value of the farthest point (in 
the direction of integration) reached by the integrator. 

The next value of the independent variable at which the solution is 
required, if ITASK = 1, 3, or 4 (see table 4.1). For ITASK = 2 or 5, 
LSODE uses TOUT on the first call to determine the direction of 
integration and, if necessary, to compute the step size to be attempted 
on the first step; on subsequent calls TOUT is ignored. LSODE 
permits integration in either direction of the independent variable. 

A flag that indicates the type of local error control to be performed. 
The legal values that can be assigned for ITOL and their meanings are 

TABLE Il.-VALUES OF ITASK USED IN MODE 
ANDTHEIRMEANINGS 

ITASK DeScriptiOn 

+ I  

2 

'3 

ab4 

b5 

Compute output valucs of I(<) ?t 5 = 5, by overshooting and 

Advance the solution to the ODE'S by one step and =turn to 

Stop at the first internal mesh point at or beyond 5 = f& and 

c~mpule  output values ofI(s> at 5 = 5, but without over- 

Advance the solution to the ODE's by m step without passing 

interpolation. 

calling subprogram. 

rcturn to calling subprogram. 

shooting 5 = Lr 
5 = $,, and return to calling subprogram. 

.User must supply value for Lilt (= TOUT). 
bser  must supply value for Lt (= TCRIT). 'Ihis option is useful if the 

probIem has a singularity at or beyond 5 = 
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TABLE 42-VALuES OF ITOL USED 
IN LSODE AND THEIR MEANINGS 

Description 

Scalar RTOL and scalar ATOL 

Anay RTOL and scalar ATOL 

given in table 4.2. The variables RTOL and ATOL are described next. 

RTOL 

ATOL 

ITASK 

ISTATE 
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The local relative error tolerance parameter for the solution. This param- 
eter can be specified either as a scalar, so that the same tolerance is used 
for all dependent variables, or as any array of length NEQ, so that 
different tolerances are used for different variables. In the latter case the 
subprogram calling LSODE must contain a dimension statement for 
RTOL. 

The local absolute error tolerance parameter for the solution. This 
parameter can also be specified either as a scalar, so that the same 
tolerance is used for all dependent variables, or as an array of length 
NEQ, so that different tolerances are used for different variables. In 
the latter case the subprogram calling LSODE must contain a dimension 
statement for ATOL. 

An index that specifies the task to be performed. This flag controls 
when LSODE stops the integration and returns the solution to the 
calling subprogram. The legal values for ITASK and their meanings 
are given in table 4.1. If ITASK = 4 or 5, the input variable TCRIT (= 
independent variable value that the integrator must not overshoot, see 
table 4.1) must be passed to LSODE as the first element of the array 
RWORK (defined below). 

An index that specifies the state of the calculation, that is, if the call to 
LSODE is the first one for the problem or if it is a continuation. The 
legal values for ISTATE that can be used on input and their meanings 
are given in table 4.3. The option ISTATE = 3 allows changes in the 
input parameters NEQ, ITOL, RTOL, ATOL, IOPT, MF, ML, and MU 
and any optional input parameter, except HO, discussed in the 
descriptions of RWORK and IWORK. The integer variables IOF'T, 
MF, ML, and MU are defined below. The parameters ITOL, RTOL, 
and ATOL may also be changed with ISTATE = 2, but LSODE does 
not then check the legality of the new values. On return from LSODE, 
ISTATE has the values and meanings given in table 4.4. 



TABLE 4.3.-VALUES OF ISTATE THAT CAN BE USED ON 
INPUT TO LSODE AND THEIR MEANINGS 

ISTATE Description 
I 

1 
2 

3 

This is the first call for the problem. 
This is not the first call for thc problem, and the calculation is to 

be continued d l y  with no change in any input parameters 
except possibly and ITASK? 

This is not the first call for the problem, and the calculation is to 
be continued normally, but with a change in input parameters 
orher than E,,,,,, and f lAsIc.  

'Set table 4.1 for description of ITASK. 

TABLE 4.4.-VALUES OF ISTATE RETURNED BY LSODE 

ISTATE 

1 

2 
-1 

-2 

-3 

-4 

-5 

-6 

ANDTHEIRMEANINGS 

Meaning 

Nothing was done because TOUT = T on fust call to LSODE. 
(However, an internal counter was set to detect and prtvent 
repeated calls of this type.) 

The integration was performed succcssfully. 
Excessive amount of work was done on this call (Le., number of 

steps excttdcd MXSl" on this call), but the integration was 
successful as far as thc value returned in T. 

Too much accucacy was requested for thc computer being used. but 
the integration was successful as far as the value returned in T. 
(If this error is detected on the first call to LSODE (Le., before 
any integration is done), an illegal input e m  @!STATE = -3, see 
below) occufs instead.) 

Illegal input was specified. The e m  message is detailed and self- 

Repeated error test failures occumd on one step, but the integration 
was successful as far as the value returned in T. 

Repeated convergence test failures occumd on one step, but the 
integration was successful as far as the value retumcd in T. 

Some component, mi.. of the error weight vector & 
vanished, so that the local e m  test cannot be applied. but the 
integration was successful as far as thc value returned in T. (This 
condition arises when pure relative error control (is., ATOL, 
= ob) was specified for a variable whose magnitude is now zero.) 

explanatory. 

*Sa table 4.6. 
4ke chapter 2. 
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IOFT An integer flag that specifies if any optional input is being used on 
this call. The legal values for IOPT together with their meanings are 
given in table 4.5. The optional input parameters that may be set by 
the user are given in table 4.6. For each such input variable this table 
lists its location in the call sequence, its meaning, and its default 
value. The quantities RWORK and WORK are work arrays described 
below. 

TABLE 4.5.-VALUFS OF IOPT THAT CAN BE USED ON 
INPUT TO LSODE AND THEIR hEANWGS 

The user has not set a value for any optional input parameter.' 
(Default values will be used for all thcsc parameters.) 

Values have been specified for one or more optional input 

table 4.6 for a list of these parameters. 

TABLE 4.6.-OFTIONAL INPUT PARAMETERS THAT CAN BE SET BY USER 
AND THEIR LOCATIONS. MEANINGS. AND DEFAULT VALUES 

op t id  
input 

parameter 

HO 

HMAX 

HMlN 

MAXORD 

MXSTEP 

MXHNlL 

Location 

RWORK(5) 

RWORK(6) 

RWORK(7) 

IWORK(5) 

IWORK(6) 

IWORK(7) 

Meaning 

Step size to be attempted on 
the first step 

Absolute value of largest step 
size (in magnitude) to be 
used on any step 

Absolute value of smallest 
step size (in magnitude) to 

Maximum mcthod order to be 
be uscd on any step. 

used on any step 

Maximum number of integra- 
tion steps allowed on any 
one call to LSODE 

Maximum numbcr of times 
that warning message that 
step size is getting too small 
is printed 

Default value 

Computed by LSODE 

0 

12 for Adams-Moulton 
method and 5 for 
backward differenti- 
ation formula method 

500 

10 

value is ignored on the first step and on the final step to reach TCRlT when 
ITASK = 4 or 5 (see table 4.1). 
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RWORK 

LRW 

IWORK 

LIW 

JAC 

4.2 Call !Sequence 

A real work array used by the integrator. The subprogram calling 
LSODE must include a dimension statement for RWORK. If ITASK = 
4 or 5, the user must set RWORK(1) = TCRIT (see table 4.1) to 
transmit this variable to LSODE. If any optional real input parameters 
are used, their values are also passed in this array to LSODE, the 
address for each of these parameters is given in table 4.6. Upon return 
from LSODE, RWORK contains several optional real output 
parameters. For each such output variable table 4.7 lists its location in 
RWORK and its meaning. In addition, the Nordsieck history array at 
the current value of the independent variable (TCUR in table 4.7) and 
the estimated local error vector in the solution incurred on the last 
successful step can be obtained from RWORK. Table 4.8 lists the 
names used for these two quantities and their locations in RWORK. 
In this table NYH is the value of NEQ on the first call to LSODE, and 
NQCUR and LENRW are both defined in table 4.7, which also gives 
their locations in the array WORK (see below). 

Length of the real work array RWORK. Its minimum value depends 
on the method flag MF (see below) and is given in table 4.9 for each 
legal value of MF. In this table the integer W O R D  is the maximum 
method order (default values = 12 and 5 for t h e m  and BDF methods, 
respectively) to be used. The integers ML and MU are the lower and 
upper half-bandwidths, respectively, of the Jacobian matrix if it is 
declared to be banded (see table 3.2). 

An integer work array used by the integrator. The subprogram calling 
LSODE must include a dimension statement for IWORK. If MITER 
(= second decimal digit of MF, defined below) = 4 or 5 (table 3.2), the 
user must set IWORK(1) = ML and IWORK(2) =MU (see descriptions 
above) to transmit these variables to LSODE. If any optional integer 
input parameters are used, their values are also passed in this array to 
LSODE; the address for each of these parameters is given in table 4.6. 
Upon return from LSODE, IWORK contains several optional integer 
output parameters. For each such output variable table 4.7 lists its 
location in WORK and its meaning. 

Length of the integer work array IWORK. Its minimum value depends 
on MITER (table 3.2) and is given in table 4.10 for each legal value of 
MITER. 

The name of the user-supplied subroutine that computes the elements 
of the Jacobian matrix. This name must be declared EXTERNAL in 
the subprogram calling LSODE. The form and description of sub- 
routine JAC are given in section 4.4. 
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TABLE 4.7.-OPTIONAL OUTPUT PARAMETERS RETURNED BY LSODE 
AND THEIR LOCATIONS AND MEANINGS 

Nordsieck history array for problem 

Estimated local error in solution on 
last successful step 

Optional 
output 

parameter 

Ku 
HCUR 
TCUR 

TOLSF 

NST 

NFE 

N E  

NQU 
NQCUR 
IMXER 

LENRW 
LENW 

YH RWORK(21) to 

ACOR 
RWORK(20 + NYH(NQCUR + 1)) 

RWORKCENRW) 
RWORK(LENRW - NEQ + 1) to 

TABLE 4 

Location 

RWORK(I1) 
RWORK(12) 
RWORK( 13) 

RWORK( 14) 

WORK( 1 1) 

WORK( 12) 

WORK( 13) 

WORK( 14) 
WORK( 15) 
WORK( 16) 

WORK( 17) 
IWORK( 18) 

Meaning 

Step size used on last successful step 
Step size to be attempted on next step 
Current value of independent variable. The 

integrator has successfully advanced the 
solution to this point. 

is computed when too much accuracy is 
requested (ISTATE = -2 or -3. sce table 4.4). 
To continue integration with the same ITOL, 
the local error tolerance parameters RTOL 
and ATOL must both be increased by at 
least a factor of TOLSF. 

Number of integration steps used so far for 
problem 

Number of derivative evaluations required so 
far for problem 

Number of Jacobian matrix evaluations (and 
iteration matrix LUdccompositions or 
inversions) so far for problem 

Method order used on last successful step 
Method order to be attempted on next step 
Index of component with largest magnitude in 

weighted local error vector (e,JEWTi, see 
chapter 2). This quantity is computed when 
repeated convergence or local error test 
failures occur. 

A tolerance scale factor, greater than 1.0, that 

Required length for array RWORK 
Required length for array IWORK 

JSEFUL INFORMATIONAL QUANTITIES REGARDING INTEGRATION 
THAT CAN BE OBTAINED FROM ARRAY RWORK 

AND THEIR NAMES AND LOCATIONS 

I Quantity N W  Location I 
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4.3 User-Supplied Subroutine for Derivatives (F') 
TABLE 49.-MINIMUM LENGTH REQUIRED BY REAL WORK 

ARRAY RWORK (i.e., MINIMUM UW) FOR EACH MF 

I MF I Minimum LRW' I 
I020 
11,12,21,22 
13,23 
14,152425 

2O+NYH(MAXORD+1)+3NEQ 
22 + NYH(MAX0RD + 1 )  + 3 NEQ + (NEWz 
22 + NYH(MAX0RD + 1) + 4 NEQ 
22 + "(WORD + 1) + (2 ML + Mu + 4)NEQ 

~~ 

'NYH is the number of ODE'S specifid on first call to LSODE. 
W O R D  is the maximum method orda to be used for problem. 
NEQ is the number of ODE's specified on cumnt call to LSODE, 
and ML and MU are. resptively, the lower and upper half- 
bandwidths of the baaded Jrobian matrix. 

TABLE 4.IO.-hUNIMUM 
LENGTH REQUIRED BY 
INTEGER WORK ARRAY 
WORK (is., MINIMUM 
LIW) FOR EACH MITER 

MITER' I MinimumLmb 

:,2 I 20 

4.5 2O+NEQ 

'Sce table 3.2 for description 

G Q z i  number of ODE'S 
specified on cumnt call to 
LSODE. 

MF Method flag that indicates both the integration method and corrector 
iteration technique to be used. MF consists of the two decimal digits 
METH, which specifies the integration method, and MITER, which 
specifies the iteration technique (eq. (3.1)). Equation (3.1) and 
tables 3.1 and 3.2 show that MF has the following 12 legal values- 
10,11,12,13,14,15,20,21,22,23,24,and25. IfMF=14,15,24,or 
25, the values of ML and MLT must be passed to LSODE as the first 
and second elements, respectively, of the array WORK (see above). 

4.3 User-Supplied Subroutine for Derivatives (F) 

Irrespective of the solution method or corrector iteration technique selected to 
solve the problem, the user must provide a subroutine that computes the derivatives 
cf} for given values of the independent variable and the solution vector. The 
name Q of this subroutine is an argument in the call vector to LSODE and must 
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therefore be declared EXTERNAL in the subprogram calling LSODE. The 
derivative subroutine F should have the form 

SUBROUTINE F (NEQ, T, Y, YDOT) 
DIMENSION Y( I),  YDOT( 1) in FORTRAN 66 
or DIMENSION Y(*), YDOT(*) in FORTRAN 77 

In addition, if NEQ is an array, the subroutine F should include a DIMENSION 
statement for it. The routine F should not alter the values in T, NEQ (or NEQ(l), 
if NEQ is an array), or the first N elements in Y, where N is the current number of 
ODE’S to be solved. The derivative vector should be returned in the array YDOT, 
with YDOT(1) = dyi/d5 (i = I), evaluated at 5 = T, y = Y. 

If the calculation of ~} involves intermediate quantities whose current values, 
that is, at 5 = cn (or co,J, are required externally to LSODE, a special calculation, 
such as a call to the routine F, must be made. The results of the last call from the 
package to the routine F should not be used because they correspond to a Y value 
that is different from [or X(5,,J] and a 5 value that may be different from 5, 
(or &ut). Here tn is the independent variable value to which the numerical 
solution was advanced on the previous integration step and hut = TOUT. If a 
special call to subroutine F is made, to reduce the storage requirement, the 
YDOT argument may be replaced with RWORK(LSAVF), the base address of an 
N-dimensional array, SAVF (see table 3.8), used for temporary storage by LSODE; 
LSAVF is the 224th word (6th integer word after 218 real words) in the common 
block LSOOOl (table 3.6). If the derivative gn is required, it can be obtained by 
calling subroutine INTDY, as explained in section 4.8. 

4.4 User-Supplied Subroutine for Analytical 
Jacobian (JAC) 

If the corrector iteration technique selected by the user requires a Jacobian 
matrix, we recommend that a routine that computes an analytical Jacobian be 
provided. The name (JAC) of this routine is an argument in the call vector to 
LSODE and must therefore be declared EXTERNAL in the subprogram calling 
LSODE. The Jacobian subroutine JAC should have the form 

SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD) 
DIMENSION Y( 1), PD (NROWPD, 1) in FORTRAN 66 
DIMENSION Ye), PD (NROWPD, *) in FORTRAN 77 

Here ML and MU are, respectively, the (user-supplied) lower and upper half- 
bandwidths of the Jacobian matrix if it is banded; and NROWPD, which is set by 
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the code, is the number of rows of the Jacobian matrix PD. For a banded matrix 
NROWPD is equal to the extended bandwidth (= 2ML + MU + l), and for a full 
matrix it is equal to the current number N of ODE's. If NEQ is an array, the 
subprogram JAC must include a DIMENSION statement for it. 

This routine should not alter the values in NEQ (or NEQ(l), if NEQ is an 
array), T, ML, MU, or NROWPD. However, the Y array may, if necessary, be 
altered. For a full Jacobian matrix (MITER = 1) the element PD(I,J) (I = l,...,N, 
J = 1, ...,N) must be loaded with a&/ayi g=T;y=Y i = k j =  J). In this case the 

arguments ML and MU are not needed. If the Jacobian matrix is banded (MITER 
= 4), the element aJ/ayj (i = 1, ..., N, i -ML sj  i + MU) must be loaded into PD 
(I - J + MU + 1, J) (I = i; J = j). Thus each band of the Jacobian matrix must be 
loaded in column-wise manner, with diagonal lines of J, from the top down, 
loaded into the rows of PD. For a diagonal matrix ML =MU = 0, and the diagonal 
elements must be loaded into a single row of length N. In any case the solver sets 
all elements of PD equal to zero before calling JAC, so that only the nonzero 
elements need to be loaded. Also each call to subroutine JAC is preceded by a call 
to subroutine F with the same arguments NEQ, T, and Y To improve computational 
efficiency, intermediate quantities needed by both routines may be saved by 
routine F in a common block, thereby avoiding recomputation by routine JAC. If 
necessary, even the derivatives at T can be accessed by JAC by means of this 
method. 

If functional iteration (MITER = 0) or an internally generated Jacobian matrix 
(MITER = 2, 3, or 5) is used, a dummy version of JAC may nonetheless be 
required to satisfy the loader. This version may be given simply as follows: 

I - (  

SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD) 
RE= 
END 

4.5 Detailed Usage Notes 

It is apparent from the description of the call sequence to LSODE that the code 
has many capabilities and therefore requires the user to set values for several 
parameters. To further clarify code usage and assist in selecting values for user- 
set parameters, we provide here a somewhat detailed guide. We first summarize 
how we expect the code to be normally used and then give detailed usage notes. 
Additional insight into code usage can be obtained from the discussions by Byrne 
and Hindmarsh (ref. 17), who examined in some detail the solution of 10 example 
problems representing a variety of problem types, and by Radhakrishnan 
(ref. 37), who studied the effects of various user-set parameters on the solution of 
stiff ODE's arising in combustion chemistry. 
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4.5.1 Normal Usage Mode 

The normal mode of communication with LSODE may be summarized as 
follows: 

(1) Set initial values in Y. 
(2) Set NEQ, T, ITOL, RTOL, ATOL, LRW, LIW, and ME 
(3) Set TOUT = first output station, ITASK = 1, ISTATE = 1 ,  and IOPT = 0. 
(4) Call LSODE. 
(5)  Exit if ISTATE < 0. 
(6)  Do desired output of Y. 
(7) Exit if problem is finished. 
(8) Reset TOUT to next print station and return to step (4). 

This procedure will result in LSODE (a) computing the step size to be attempted 
on the first step, (b) continuing the integration with step sizes generated internally 
until the first internal mesh point at or, more usually, just beyond TOUT, and (c) 
computing the solution at TOUT by interpolation. The returned value T will be 
set equal to TOUT exactly, and Y will contain the solution at TOUT. Because the 
normal output value of ISTATE is 2, it does not have to be reset for normal 
continuation. 

4.5.2 Use of Other Options 

The calling subprogram may also make use of other options included in the 
package. For example, in step (8) ISTATE could be reset to 3 to indicate that at 
TOUT some parameters, such as NEQ or MF, have been changed. The task to be 
performed, indicated by the value of ITASK, can, however, be changed without 
resetting ISTATE. In the event of integration difficulties parameter values may 
also be changed in step (3, followed by a return to step (4), if the new values will 
prevent a recurrence of the indicated trouble. 

4.5.3 Dimensioning Variables 

Irrespective of the options selected, the subprogram calling LSODE must 
include DIMENSION statements for all call sequence variables that are arrays. 
Such variables include Y, RTOL, ATOL, RWORK, IWORK, and, as discussed 
below, possibly NEQ. The solution vector Y may be declared to be of length NEQ 
or greater. The first NEQ elements of the Y array must be the variables whose 
ODE’S are to be solved. The remaining locations, if any, may be used to store 
other real data to be passed to the routines F and/or JAC. The LSODE package 
accesses only the first NEQ elements of Y the remaining elements are unchanged 
by the code. 

The parameter NEQ is usually a scalar quantity. However, an array NEQ may 
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be used to store and pass integer data to the routines F and/or JAC. In this case the 
first element of NEQ must be set equal to the number of ODE’S. The LSODE 
package accesses only NEQ(1). However, NEQ is used as an argument in the 
calls to the routines F and JAC, so that these routines, and the MAIN program, 
must include NEQ in a DIMENSION statement. 

4.5.4 Decreasing the Number of Differential Equations (NEQ) 

In the course of solving a problem the user may decrease (but not increase) the 
number of ODE’s. This option is useful if some variables reach steady-state 
values while others are still varying. Dropping these constant quantities from the 
ODE list decreases the size of the system and hence increases computational 
efficiency. To use this option, upon return from LSODE at the appropriate time, 
the calling subprogram must reset the value of NEQ (or NEQ( 1)); set ISTATE = 3; 
reset the values of all other parameters that are either required to continue the 
integration, such as TOUT if ITASK = 1,3, or 4 (table 4.1), or are changed at the 
user’s option; and then call LSODE again. If the Jacobian matrix is declared to be 
banded (MITER = 4 or 5, table 3.2) and reductions can be made to the half- 
bandwidths ML and Mu, they will also produce efficiency increases. The option 
of decreasing the number of ODE’s may be exercised as often as the user .wishes. 
Of course, each time the size of the ODE system is decreased the changes 
discussed above should be made and the resulting number of ODE’s can never be 
less than 1. However, the LRW and LIW values need not be reset. 

If, at any time, the number of ODE’S is decreased from N to N’, LSODE will 
drop the last N - N’ ODE’S from the system and integrate the first N‘equations. It 
is therefore important in formulating the problem to order the variables carefully 
and make sure that it is indeed the last N - N’ variables that attain steady-state 
values. In continuing the integration LSODE will access only the first N’ elements 
of Y However, the remaining N - N‘, or more, elements can be accessed by the 
user, and so no special programming is needed in either routine F or JAC. 

4.5.5 Specification of Output Station (TOUT) 

The argument TOUT must be reset every time LSODE is called if the option 
given by ITASK = 1 , 3, or 4 is selected. For the other two values of ITASK (Le., 2 
and 5), TOUT need be set only on the first call to LSODE. Irrespective of the 
value of ITASK, the TOUT value provided on the first call to LSODE is used to 
determine the direction of integration and, if the user has not supplied a value for 
it, to compute the step size to be attempted on the first step. Therefore unless the 
user specifies the value for the initial step size, it is recommended that some 
thought be given to the value used for TOUT on the first call to LSODE. 

On the first call to LSODE, that is, with ISTATE = 1, TOUT may be set equal to 
the initial value of the independent variable. In this case LSODE will do nothing, 
and so the value ISTATE = 1 will be returned to the calling subprogram; however, 
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an internal counter will be updated to prevent repeated calls of this nature. If such 
a “first” call is made more than four times in a row, an error message will be 
issued and the execution terminated. 

On the second and subsequent calls to LSODE there is no requirement that the 
TOUT values be monotonic. However, a value for TOUT that “backs up” is 
limited to the current internal interval [(TCUR - HU),TCUR], where TCUR is the 
current value of the independent variable and HU is the step size used on the 
previous step. 

4.5.6 Specification of Critical Stopping Point (TCRIT) 

In addition to TOUT a value must be specified for TCRIT if the option 
ITASK = 4 is selected. TCRIT may be equal to TOUT or beyond it, but not 
behind it, in the direction of integration. The integration is not permitted to 
overshoot TCRIT, so that the option is useful if, for example, a singularity exists 
at or beyond TCRIT. This variable is also required with the option ITASK = 5. In 
either case the first element of the array RWORK (i.e., RWORK( 1)) must be set 
equal to TCRIT. If the solver reaches TCRIT within roundoff, it will return 
T = TCRIT exactly and the solution at TCRIT is returned in Y. To continue 
integrating beyond TCRIT, the user must reset either ITASK or TCEUT. In either 
case the value of ISTATE need not be reset. However, whenever TCRIT is 
changed, the new value must be loaded into RWORK(1). 

4.5.7 Selection of Local Error Control Parameters (ITOL, RTOL, and 
ATOL) 

Careful thought should be given to the choice of ITOL, which together with 
RTOL and ATOL determines the nature of the error control performed by LSODE. 
The value of ITOL dictates the value of the local error weight vector m, with 
element EWTj defined as 

EWT~ = RTOL,~~~+ATOL, ,  (4.1) 

where RTOLj and ATOL, are, respectively, the local relative and absolute error 
tolerances for the ith solution component Yj and the bars 1.1 denote absolute value. 
The solver controls the estimated local errors {d i}  in { Yi] by requiring the root- 
mean-square (rms) norm of dj/EWTj to be 1 or less. 

Pure relative error control for the ith solution component is obtained by setting 
ATOL, = 0; RTOLi is then a measure of the number of accurate significant fig- 
ures in the numerical solution. This error control is generally appropriate when 
widely varying orders of magnitude in Yj are expected. However, it cannot be 
used if the solution vanishes because relative error is then undefined. Pure 
absolute error control for the ith solution component is obtained by setting 
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RTOLi = 0; ATOLi is then a measure of the largest number that may be neglected. 

Both RTOL and ATOL can be specified (1) as scalars, so that the same error 
tolerances are used for all variables, or (2) as arrays, so that different tolerances 
are used for different variables. The value of the user-supplied parameter ITOL 
indicates whether RTOL and M O L  are scalars or arrays. The legal values that 

-can be assigned to ITOL and the corresponding types of RTOL and M O L  are 
given in table 4.2. If RTOL and/or ATOL are arrays, the calling subprogram must 
include an appropriate DIMENSION statement. A scalar RTOL is generally 
appropriate if the same number of significant figures is acceptable for all 
components of Y. A scalar ATOL is generally appropriate when all components of 
Y, or at least their peak values, are expected to be of the same magnitude. 

In addition to ITOL, RTOL and ATOL should be selected with care. Now the 
code controls an estimate of only the local error, that is, an estimate of the error 
committed on taking a single step, starting with data regarded as exact. However, 
what is of interest to the user is the global truncation error or the actual deviation 
of the numerical solution from the exact solution. This error accumulates in a 
nontrivial manner from the local errors and is neither measured nor controlled by 
the code. It is therefore recommended that the user be conservative in choosing 
values for the local error tolerance parameters. However, requesting too much 
accuracy for the precision of the machine will result in an error exit (table 4.4). In 
such an event the minimum factor TOLSF by which RTOL and ATOL should both 
be scaled up is returned by LSODE (see table 4.7). Some experimentation may be 
necessary to optimize the tolerance parameters, that is, to determine values that 
produce sufficiently accurate solutions while minimizing the execution time. The 
global errors in solutions generated with particular values for the local error 
tolerance parameters can be estimated by comparing them with results produced 
with smaller tolerances. In reducing the tolerances all components of RTOL and 
ATOL, and hence of EwT, should be scaled down uniformly. 

There is no requirement that the same values for ITOL, RTOL, and ATOL be 
used throughout the problem. If during the course of the problem any of these 
parameters is changed, the user should reset ISTATE = 3 before calling LSODE 
again. (ISTATE need not be reset; however, LSODE will not then check the 
legality of the new values.) This option is useful, for example, if the solution 
displays rapid changes in a small subinterval but is relatively smooth elsewhere. 
To accurately track the solution in the rapidly varying region, small values of 
RTOL and ATOL may be required. However, in the smooth regions these 
tolerances could be increased to minimize execution time. 

4.5.8 Selection of Integration and Corrector Iteration Methods (MF) 

The choice of the method flag MF may also require some experimentation. The 
user should consider the nature of the problem and storage requirements. The 
primary consideration regarding MF is stiffness. If the problem is not stiff, the 
best choice is probably MF = 10 (Adams-Moulton (AM) method with functional 
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iteration.) If the problem is stiff to a significant degree, METH should be set 
equal to 2 (table 3.1), and MITER (table 3.2) depends on the structure of the 
Jacobian matrix. If the Jacobian is banded, MITER = 4 (user-supplied analytical 
Jacobian) or 5 (internally generated Jacobian by finite-difference approximations) 
should be used. For either of these two MITER values the user must set values for 
the lower (ML) and upper (MU) half-bandwidths of the Jacobian matrix. The first 
and second elements of the integer work array IWORK must be set equal to ML 
and MU, respectively; that is, IWORK( 1) = ML and IWORK(2) = MU. For a full 
matrix MITER should be set equal to 1 (analytical Jacobian) or 2 (internally 
generated Jacobian). If the matrix is significantly diagonally dominant, the choice 
MITER = 3, that is, Jacobi-Newton (JN) iteration using an internally generated 
diagonal approximation for the Jacobian matrix, can be made. To use this 
iteration technique with an analytical Jacobian, set MITER = 4 and ML = MU = 0. 

If the problem is only mildly stiff, the choice METH = 1 (Le., the AM method) 
may be more efficient than METH = 2 (i.e., the backward differentiation formula 
(BDF) method). For this case experimentation would be necessary to identify the 
optimal METH. If the user has no a priori knowledge regarding the stiffness of 
the problem, one way to determine its nature is to try MF = 10 and examine the 
behavior of both the solution and step size pattern. (It is recommended that some 
upper limit be set for the total number of steps or derivative evaluations to avoid 
excessive run times.) If the typical values of the step size are much smaller than 
the solution behavior would appear to require, for example, more than 100 steps 
are taken over an interval in which the solution changes by less than 1 percent, the 
problem is probably stiff. The degree of stiffness can be estimated from the step 
sizes used and the smoothness of the solution. 

Irrespective of the integration method selected, the least effective iteration 
technique is functional iteration, given by MITER = 0, and the most effective is 
Newton-Raphson (NR), given by MITER = 1 or 2 (4 or 5 for a banded Jacobian 
matrix). Generally JN iteration is somewhere in between. However, storage 
requirements increase in the same order as the effectiveness of the iteration 
technique (see table 4.9), and so trade-off considerations are necessary. For 
reasons of computational efficiency the user is encouraged to provide a routine for 
computing the analytical Jacobian, unless the system is fairly complicated and 
analytical expressions cannot be derived for the matrix elements. The accuracy of 
the Jacobian calculation can be checked by comparison with the J internally 
generated with MITER = 2 or 5. Jacobi-Newton iteration requires considerably 
less storage and execution time per iteration but will be effective only if the 
Jacobian matrix is significantly diagonally dominant. 

The importance of supplying an analytical Jacobian matrix, especially for large 
problems, is illustrated by Radhakrishnan (ref. 37), who studied 12 test problems 
from combustion kinetics. The problems covered a wide range of reaction 
conditions and reaction mechanism size. The effects on solution efficiency of 
(1) METH, (2) the first output station, and (3) optimizing the local error tolerances 
were also examined. 
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4.5.9 Switching Integration and Corrector Iteration Methods 

The user may specify different values for MF in different subintervals of the 
problem. This option is useful if the problem changes character and is nonstiff in 
some regions and stiff elsewhere. Because stiff problems are usually characterized 
by a nonstiff initial “transient” region, one could use MF = 10 in the initial region 
and then switch to MF = 21 (the BDF method with NR iteration using an 
analytical Jacobian matrix) in the later stiff regime. It is very straightfoiward to 
change integration methods and corrector iteration techniques. Upon return from 
LSODE the user simply resets MF to the desired new value. The other action 
required is to reset ISTATE = 3 before calling LSODE again. The lengths LRW 
and LIW, respectively, of the arrays RWORK and IWORK depend on MF (see 
tables 4.9 and 4.10). If different methods are to be used in the course of solving a 
problem, storage corresponding to at least the maximum values of LRW and LIW 
must be allocated. That is, the dimensions of RWORK and IWORK must be set 
equal to at least the largest of the LRW and LIW values, respectively, required by 
the different methods to be used. 

4.6 Optional Input 

In addition to the input parameters whose values are required by the code, the 
user can set values for several other Parameters to control both the integration and 
the output from the code. These optional input parameters are given in table 4.6, 
together with their locations and default values. If any of these parameters are 
used, the user must set IOPT = 1 to relay this information to the solver, which will 
examine all optional input parameters and select only those for which nonzero 
values are specified. A value of zero for any parameter will cause its default value 
to be used. Thus to use a subset of the optional inputs, set RWORKO = 0.0 and 
IWORKO = 0 (I = 5 to 7), and then set parameters of interest to the desired 
(nonzero) values. The variable HO, the step size to be attempted on the first step, 
must indicate the direction of integration. That is, HO must be a positive quantity 
for integration in the forward direction (increasing values of the independent 
variable) and negative otherwise. All other input parameters must be positive 
numbers; otherwise, an error exit will occur. 

To reset any optional input parameter on a subsequent call to LSODE, ISTATE 
must be set equal to 3. IOPT is not altered by LSODE and therefore need not be 
reset. Also because the code does not alter the values in RWORK (5)  to RWORK 
(7) and IWORK(5) to IWORK(7), only parameters for which new values are 
required need to be reset. To specify a default value for any parameter for which a 
nondefault value had previously been used, simply load the appropriate location 
in RWORK or IWORK with a zero. Of course, if all variables are to have default 
values, simply reset IOPT = 0. 
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4.6.1 Initial Step Size (HO) 

The sign of the step size HO must agree with the direction of integration; 
otherwise, an error exit will occur. Also, its magnitude should be considerably 
smaller than the average value expected for the problem because the code starts 
the integration with a first-order method. Of course, the integrator tests that the 
given step size does produce a solution that satisfies the local error test and, if 
necessary, decreases it (in magnitude). The only test made on the magnitude of 
HO prior to taking the first step is that it does not exceed the user-supplied value 
for HMAX, the maximum absolute step size allowed for the problem. 

4.6.2 Maximum Step Size (HMAX) 

The user may have to specify a finite value for HMAX (default value, -) if the 
solution is characterized by rapidly varying transients between long smooth 
regions. If the step size is too large, the solver may skip over the fine detail that 
the user may be (primarily) interested in. An example of this behavior is the 
buildup of ozone and oxygen atom concentrations in the presence of sunlight 
(ref. 17). 

4.6.3 Maximum Method Order (MAXORD) 

The optional input parameter MAXORD, the maximum method order to be 
attempted on any step, should not exceed the default value-12 for the AM 
method and 5 for the BDF method. If it does, it will be reduced to the default 
value. Also, in the course of solving the problem, if MAXORD is decreased to a 
value less than the current method order, the latter quantity will be reduced to the 
new MAXORD. 

The maximum method order has to be restricted to a value less than the default 
value for stiff problems when the eigenvalues of the Jacobian matrix are close to 
the imaginary axis; that is, the solution is highly oscillatory. In such a situation 
the BDF method of high order (2 3) has poor stability characteristics and, as the 
stability plots in Gear (ref. 10) show, the unstable region grows as the order is 
increased. For this reason MAXORD should be set equal to 3 unless the 
eigenvalues are imaginary; that is, Re&) = 0 and Im(hi) # 0, where Re&) and 
Im(hi) are the real and imaginary parts of hi, the ith eigenvalue. In this case the 
value MAXORD = 2 should be used. 

4.7 Optional Output 

The user is usually primarily interested in the numerical solution and the 
corresponding value of the independent variable. These quantities are always 
returned in the call variables Y and T. In addition, several optional output 

92 



4.8. Other Routines 

quantities that contain information about the integration are returned by LSODE. 
These quantitites are given in tables 4.7 and 4.8, together with their locations. 
Some of these quantities give a measure of the computational work required and 
may, for example, help the user decide if the problem is stiff or if the right method 
is being used. Other output quantities will, in the event of an error exit, help the 
user either set legal values for some parameters or identify the reason for repeated 
convergence failures or local error test failures. 

4.8 Other Routines 

To gain additional capabilities, the user can access the following subroutines 
included in the LSODE package: INTDY, SRCOM, XSETF, and XSETUN. 
Among these, only INTDY is used by LSODE. 

4.8.1 Interpolation Routine (Subroutine INTDY) 

The subroutine INTDY provides derivatives of Y, up to the current order, at a 
specified point T and may be called only after a successful return from LSODE. 
The call to this routine takes the form 

CALL INTDY (T, K, RWORK(21), NYH, DKY, FLAG) 

where T, K, RWORK(21), and NYH are input parameters and DKY and FLAG 
are output parameters. The arguments to lNTDY are defined as follows: 

T 

K 

RWORK(2 1) 

NYH 

Value of independent variable at which the results are required. 
For the results to be valid T must lie in the interval [(TCUR - 
HU),TCUR], where TCUR and HU are defined in table 4.7. 

Integer that specifies the desired derivative order and must satisfy 
0 I K I current method order NQCUR (see table 4.7 for location 
of this quantity). Now, because the method order is never less 
than 1, the first derivative a/& can always be obtained by 
calling INTDY. 

Base address of the Nordsieck history array (see table 4.8). 

Number of ODE's used on the first call to LSODE. If the number 
of ODE's is decreased during the course of the problem, NYH 
should be saved. An alternative way of obtaining NYH is to 
include the common block LSOOOl in the subprogram calling 
INTDY. LSODE saves NYH in LSOOOl as the 232nd word-the 
14th integer word after 218 real words (see table 3.6). 
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DKY Array of length N that contains the Kth derivative of Y at T. The 
subprogram calling INTDY must include a DIMENSION statement 
for DKY if NYH > 1. Alternatively, to save storage, DKY can be 
replaced with RWORK(LSAVF)-see section 4.3. 

IFLAG An error flag with following values and meanings: 
0 

-1 
-2 

Both T and K were legal. 
Illegal value was specified for K. 
Illegal value was specified for T. 

4.8.2 Using Restart Capability (Subroutine SRCOM) 

The subroutine SRCOM is useful if one is either alternating between two or 
more problems being solved by LSODE or interested in interrupting a run and 
restarting it later. The latter situation may arise, for example, if one is interested in 
steady-state values with no a priori knowledge of the required integration interval. 
The run may be stopped periodically, the results examined and, if necessary, the 
integration continued. This procedure is clearly more economical than making 
repeated runs on the same problem with, say, increasing values of TOUT. To 
exploit the capability of stopping and then continuing the integration, the user 
must save and then restore the contents of the common blocks LSOOOl and 
EHOOO1. This information can be stored and restored by calling SRCOM. The 
call to this routine takes the form 

CALL SRCOM (RSAV, ISAV, JOB) 

where RSAV must be declared as a real array of length 2 18 or more in the calling 
subprogram and ISAV as an integer array of length 41 or more and JOB is an 
integer flag whose value (= 1 or 2) indicates the action to be performed by 
SRCOM as follows: JOB = 1 means “save the contents of the two common 
blocks,’’ and JOB = 2 means “restore this information.” 

Thus to store the contents of EHOOOl and LSOOOl, SRCOM should be called as 
follows: 

CALL SRCOM (RSAV, ISAV, 1) 

Upon return from SRCOM, RSAV and ISAV will contain, respectively, the 21 8 
real and 39 integer words that together make up the common block LSOOOl. The 
40th and 41st elements of ISAV will contain the two integer words MESFLG and 
LUNIT in the common block EHOOOl (table 3.6). The lengths and contents of the 
arrays RWORK and WORK must also be saved. The lengths LENRW and 
LENIW required for the arrays RWORK and IWORK are saved by LSODE as the 
17th and 18th elements, respectively, of the array IWORK (see table 4.7). 

To continue the integration, the arrays RWORK and IWORK and the contents 
of the common blocks LSOOOl and EHOOOl must be restored. The common block 
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contents are restored by using the previously saved arrays RSAV and ISAV and 
calling the routine SRCOM as follows: 

CALL SRCOM (RSAV, ISAV, 2) 

The user should then set values for the input parameters required by LSODE, and 
the integration can be continued by calling this routine. Note, in particular, that 
ISTATE must be set equal to 2 or 3 to inform LSODE that the present call is a 
continuation one for the problem (see table 4.3). 

4.8.3 Error Message Control (Subroutines XSETF and XSE") 

To reset the value of the logical unit number LuNlT for output of messages 
from the code, the routine XSETUN should be called as follows: 

CALL XSETUN (LUN) 

where LUN is the new value for LUNIT. Action is taken only if the specified 
value is greater than zero. 

The value of the flag MESFLG, which controls whether messages from the 
code are printed or not, may be reset by calling subroutine XSETF as follows: 

CALL XSETF (MFLAG) 

where MFLAG is the new value for MESFLG. The legal values for MFLAG are 
0 and 1. Specifying any other value will result in no change to the current value 
of MESFLG. Setting MFXAG = 0 does carry the risk of losing valuable information 
through error messages from the integrator. 

4.9 Optionally Replaceable Routines 

If none of the error control options included in the code are suitable, more 
general error controls can be obtained by substituting user-supplied versions of 
the routines EWSET and/or WORM (table 3.3). Both routines are concerned 
with measuring the local error. Hence any replacement may have a major impact 
on the performance of the code. We therefore recommend that modifications be 
made only if absolutely necessary, and that too with great caution. Also the effect 
of the changes and the accuracy of the programming should be studied on some 
simple problems. 

4.9.1 Setting Error Weights (Subroutine EWSET) 

The subroutine EWSET sets the array of error weights EWT, equation (4.1). 
This routine takes the form 
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SUBROUTINE EWSET (N, ITOL, RTOL, ATOL, YH, EWT) 

where N is the current value of the number of ODE’S; ITOL, RTOL, ATOL, and 
EWT have been defined previously; and YH contains the current Nordsieck 
history array, that is, the current solution vector YCUR and its NQ scaled 
derivatives, where NQ is the current method order. On the first call to EWSET 
from the routine LSODE, YCUR is the same as the Y array (which then contains 
the initial values supplied by the user); thereafter the two arrays may be different. 

The error weights {EWTi} are used in the local truncation error test, which 
requires that the rms norm of diEWT, be 1 or less. Here, di is the estimated local 
error in Yi. The above norm is computed in the routine VNORM (discussed in 
section 4.9.2) to which the EWT array is passed. 

If the user replaces the current version of EWSET, the new version must return 
in each EWTi (i = 1 ,..., N) a positive quantity for comparison with di. This routine 
is called by the routine LSODE only (tables 3.4 and 3.5). However, in addition to 
its use in the local truncation error test (which is performed in the routine 
STODE), EWT is used (1) by the routine LSODE in computing the initial step 
size HO and the optional output integer IMXER (table 4.7) and (2) by the routine 
PREPJ in computing the increments in solution vector for the difference quotient 
Jacobian matrix (MITER = 2 or 5, table 3.2) and for the diagonal approximation 
to the Jacobian matrix (MITER = 3). The base address for EWT in the array 
RWORK is LEWT, which is the 222nd word (the 4th integer word after 218 real 
words) in the common block LSOOOl . 

If the user’s version of EWSET uses current values of the derivatives of Y, they 
can be obtained from YH, as described later. Indeed, derivatives of any order, up 
to NQ, can be found from YH, whose base address in RWORK is LYH (= 21), the 
221st word (the 3rd integer word past 21 8 real words) in LSOOOl. The array YH is 
of length NYH(NQ + l), where NYH is the value of N on the first call to LSODE. 
The first N elements correspond exactly to the YCUR array. The remaining terms 
contain scaled derivatives of YCUR. For example, the N elements J*NYH + 1 to 
J*NYH + N (J = O,l, ..., NQ) contain the Jth scaled derivative HJyCJ)/J!, where H is 
the current value of the step size. On the first call to EWSET, before any 
integration is done, H is (temporarily) set equal to 1 .O. Thereafter its value may be 
determined from LSOOO1, where it is the 212th real word. This common block 
also contains NYH as the 232nd word (the 14th integer word past 218 real words) 
and NQ as the 253rd word (the 35th integer word past 21 8 real words). Thus if the 
user wishes to use the Jth derivative in EWSET, it may be obtained by including 
the following statements: 

SUBROUTINE EWSET (N, ..., YH, ..., EWT) 
REAL (or DOUBLE PRECISION) YH, EWT, RLS, H, ... 
INTEGER N, ILS, NQ, NYH, ... 
DIMENSION YH( l), EWT(I), ... in FORTRAN 66 
DIMENSION YH(*),EWT(*), ... in FORTRAN 77 
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COMMON/LSOOO1/RLS(218), ILS(39) 
NQ=ILS(35) 
NYH = ILS(14) 
H = RLS(212) 

The Jth derivative (0 5 J 5 NQ) is then given by 

J! YH(J*NYH+I) 
yp = , I=l ,  ..., N, 

HJ 

where Yinis the Jth derivative of YI. The routine must include a data type 
declaration and a DIMENSION statement for 2n. To save on storage, these 
values may be stored temporarily in the vector EWT. 

4.9.2 Vector-Norm Computation (Function VNORM) 

The real (or double precision) function routine VNORM computes the weighted - root-mean-square (rms) norm of a vector. It is used as follows: 

where N is the length of the real arrays V, which contains the vector, and W, which 
contains the weights. Upon return from VNORM, D contains the weighted rms- 
norm 

This routine is used by STODE to compute the weighted rms norm of the 
estimated local error. STODE also uses information returned by WORM to 
perform the corrector convergence test and to compute factors that determine if 
the method order should be changed. Other routines that access WORM are 
LSODE, to compute the initial step size HO, and PREPJ, to compute the increments 
in the solution vector for generating difference quotient Jacobians (MITER = 2 or 
5, table 3.2). 

If the user replaces the routine VNORM, the new version must return a positive 
quantity in VNORM, suitable for use in local error and convergence testing. The 
weight array W can be used as needed, but it must not be altered in WORM. For 
example, the max-norm, that is, maxlVflj, satisfies this requirement, as does a 
n o m  that ignores some components of V. The latter procedure has the effect of 
suppressing error control on the corresponding components of 1. 
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4.10 Overlay Situation 

If LSODE is to be used in an overlay situation, the user must declare the 
variables in the call sequence to LSODE and in the two internal common blocks 
LSOOOl and EHOOOI in the MAIN program to ensure that their contents are 
preserved. The common block LSOOOl is of length 257 (218 real or double- 
precision words followed by 39 integer words), and EHOOOI contains two integer 
words (see table 3.6). 

4.11 Troubleshooting 

In this section we present a brief discussion of the corrective actions that may 
be taken in case of difficulty with the code. If the execution is terminated 
prematurely, the user should examine the error message and the value of ISTATE 
returned by LSODE (table 4.4). We therefore recommend that the current value of 
MESFLG not be changed, at least until the user has gained some experience with 
the code. The legality of every input parameter, both required and optional, is 
checked. If illegal input is detected by the code, it returns to the calling subprogram 
with ISTATE = -3. The error message will be detailed and will make clear what 
corrective actions to take. If the illegal input is caused by a request for too much 
accuracy, the user should examine the value of TOLSF returned in RWORK( 13) 
(table 4.7) and make necessary adjustments to RTOL and ATOL, as described in 
section 4.5.7. If an excessive accuracy requirement is detected during the course 
of solving the problem, the value ISTATE = -2 is returned. To continue the 
integration, make the adjustments mentioned above, set ISTATE = 3, and call 
LSODE again. 

Another difficulty related to accuracy control may be encountered if pure 
relative error control for, say, the ith variable is specified (Le., ATOLj = 0). If this 
solution component vanishes, the error test cannot be applied. In this situation the 
value ISTATE = -6 is returned to the calling subprogram. The error message 
identifies the component causing the difficulty. To continue integrating, reset 
ATOL for this component to a nonzero value, set ISTATE = 3, and call LSODE 
again. 

If more than MXSTEP (default value, 500) integration steps are taken on a 
single call to LSODE without completing the task, the error return ISTATE = -1 is 
made. The problem might be the use of an inappropriate integration method or 
iteration technique. The use of MF = 10 (or 20) on a stiff problem is one example. 
The user should, as described previously under the selection of MF (section 
4.5.8), verify that the value of MF is right for the problem. Very stringent accuracy 
requirements may also cause this difficulty. Another possibility is that pure 
relative error control has been specified but most, or all, of the 1x1 are very small 
but nonzero. Finally, the solution may be varying very rapidly, forcing the 
integrator to select very small step sizes, or the integration interval may be very 
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long relative to the average step size. To continue the integration, simply reset 
ISTATE = 2 and call LSODE again-the excess step counter will be reset to zero. 
To prevent a recurrence of the error, the value of MXSTEP can be increased, as 
described in section 4.6. If this action is taken between calls to LSODE, ISTATE 
must be set equal to 3 before LSODE is called again. Irrespective of when 
MXSTEP is increased, IOPT should be set equal to 1 before the next call to 
LSODE. 

If the integrator encounters either repeated local error test failures or any local 
error test failure with a step size equal to the user-supplied minimum value HMIN 
(table 4.6), LSODE returns with ISTATE = -4. The difficulty could be caused by 
a singularity in the problem or by inappropriate input. The user should check 
subroutines F and JAC for errors. If none is found, it may be necessary to monitor 
intermediate quantities. The component IMXER causing the error test failure is 
returned as IWORK(16) (table4.7). The values Y(IMXER), RTOL(IMXER), 
ATOL-R), and ACOR(IMXER) (see table 4.8) should be examined. If pure 
relative error control had been specified for this component, very small but 
nonzero values of Y(IMXER) may cause the difficulty. 

These checks should also be made if the integration fails because of either 
repeated corrector convergence test failures or any such failure with a step size 
equal to HMIN. In this case LSODE returns the value ISTATE = -5 along with a 
value for IMXER defined above. If an analytical Jacobian is being used, it should 
be checked for errors. The accuracy of the calculation can also be checked by 
comparing J with that generated internally. Another reason for this failure may be 
the use of an inappropriate MITER, for example, MITER = 3 for a problem that 
does not have a diagonally dominant Jacobian. It may be helpful to try different 
values for MITER and monitor the successive corrector estimates stored as the Y 
array in subroutine STODE. 

In addition to the error messages just discussed, a warning message is printed if 
the step size H becomes so small that T + H = T on the computer, where T is the 
current value of the independent variable. This error is not considered fatal, and 
so the execution is not terminated nor is a return made to the calling subprogram. 
No action is required by the user. The warning message is printed a maximum 
number of MXHNIL (default value, 10) times per problem. The user can change 
the number of times the message is printed by resetting MXHNIL, as discussed in 
section 4.6. To indicate the change to LSODE, the parameter IOPT must be set 
equal to 1 before LSODE is called. 
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Chapter 5 
Example Problem 
5.1 Description of Problem 

In this chapter we demonstrate the use of the code by means of a simple stiff 
problem taken from chemical kinetics. The test case, described elsewhere (refs. 
17,28, and 38), consists of three chemical species participating in three irreversible 
chemical reactions at constant density and constant temperature: 

kl 

s, + 52, 

k3 s2+s,  -+ s3+s3, 

with kl = 4 ~ 1 0 - ~ ,  k2 = lo4, and k3 = 1 . 5 ~ 1 0 ~ .  In reactions (5.1) to (5.3), Si is the 
chemical symbol for the ith species, the arrows denote the directions of the 
reactions (the single arrow for each reaction means that it takes place in the 
indicated direction only), and the {kj} are the specific rate coefficients for the 
reactions. The units of kj depend on reaction type (e.g., ref. 39). If yi denotes the 
molar concentration of species i, that is, moles of species i per unit volume of 
mixture, the governing ODE’S are given by 

* = - 0.04 y1 + 1 0 4 ~ ~ ~ ~ ,  
dt (5-4) 

%= 0 . 0 4 ~ ~  - 1 0 4 ~ ~ ~ ~  -3x107y2y2, 
dt 
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%= 3x107y2y2, 
dt 

where t is time in seconds. The initial conditions are 

Y1(t=O)=l; ~ ~ ( r = O ) = ~ ~ ( t = 0 ) = 0 .  (5.7) 

The example problem is interesting because the reaction rate coefficients vary 
over nine orders of magnitude. Also it can be quite easily verified that at steady 
state, that is, as t + 00, y1+ 0, y2 + 0, and y3 + 1. To study the evolution of the 
chemical system, including the approach to the final state, we integrate the ODE’s 
up to t = 4 ~ 1 0 ’ ~ s ,  generating output at t = 0 . 4 ~ 1 r  s (n = O,l, ..., 11). 

5.2 Coding Required To Use LSODE 

5.2.1 General 

All of the coding required to solve the example problem with LSODE is 
included (in the form of comment statements) in the package supplied to the user. 
The MAIN program that calls LSODE and manages output is given in figure 5.1. 
Figure 5.2 lists the subroutine that computes the derivatives. Because a value of 
MITER = 1 is used (fig. 5.1), a routine that computes the analytical Jacobian 
matrix is required. This routine is given in figure 5.3. The names used for the 
derivative and Jacobian matrix subroutines are, respectively, FEX and JEX. 
Therefore these names are used as arguments in the call to LSODE and declared 
EXTERNAL in the MAIN program (fig. 5.1). 

5.2.2 Selection of Parameters 

Because the problem is stiff, the choice METH = 2 is made. For the same 
reason functional iteration, that is, MITER = 0, is rejected. It is straightforward to 
compute the analytical Jacobian matrix, which should be used for reasons of 
efficiency. In any case, the choice MITER = 3, that is, Jacobi-Newton iteration, 
must not be made because the Jacobian matrix is not diagonally dominant. The 
choice MITER = 4 with ML = 1 and MU = 2 could be made but will require more 
storage than MITER = 1 (see table 4.9). More importantly the computational 
overhead for the LU-decomposition of the iteration matrix is more for MITER = 4 
than for MITER = 1. Hence the value MF = 21 is used. 

The number NEQ of ODE’s is equal to the number (= 3) of chemical species. 
To minimize storage, the lengths LRW and LIW of the work arrays RWORK and 
IWORK are set equal to their minimum required values. According to the 
formulas given in tables 4.9 and 4.10 for MF = 21, these lengths are as follows: 
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EXTERNAL FEX, JEX 
DOUBLE PRECISION ATOL, RUORK, RTOL, T, TOUT, Y 
DIMENSION Y (3), ATOL(3), RYORK(58), IWRK(23) 
NEQ = 3 

T - 0-W _ _ _ _  
TOUT = .4W 
ITOL = 2 
RTOL l.D-4 

ITASK = 1 
ISTATE = 1 
IOPT - 0 
m=58 
L I Y  - 23  
MF = 21 
00 40 IOUT = 1,12 

CALL L!3DE(FEX,NEQ,Y,T,TWT, ITOL,RTOL,ATOl, ITASK,ISTATE, 
1 IOPT, RWORK, LRV, IWRK, LIY, JEX,WF) 

m I T E ( 3  1 a) T, Y(1) I r(2) a Y(3) 
20 FOW(AT(7H AT T =,E12.4,6H Y =,3E15.7) 

40 TOUT - TOUT*lO-W 
IF (ISTATE .LT. 0) 60 TO 80 

~ I T E ( 3 , 6 O ) I W R K ( l l ) ,  IYORK(lZ), IYORK(13) 

STnP 
60 FORHAT(/lZH n0. STEPS =,14111H NO. F-S ~ 8 1 4 , l l H  NO. J-S =,14) 

80 GiTE(3,90)  ISTATE 
90 FOW(AT(///ZH ERROR HALT.. ISTATE -,IS) 

STOP 
U I D  

Figure 5.1 .-Listing of MAIN program for example problem. 

SUBROUTINE FEX (NEQ, T, Y, YWT) 
WUBLE PRECISION T, Y, YDOT 
DIMENSION Y(3), YDoT(3) 
Y W T  1 
YWT131  = J.D7*Y(Z)*Y(Z) 
YM)T 2 -YDOT(l) - YDOT(3) 
RETURN 
Em 

computes derivatives for example problem. 

a -.04DO*Y(1) + l.D4*Y(Z)*Y(3) 

Figure 59.-Listing of subroutine (FEW that 

LRW =22 + 3(5 + 1) + 3(3) + 32 = 58 
and 

LIW = 20 + 3 = 23. 

Selection of the error tolerances requires some explanation. A scalar RTOL is 
used because the same number of significant figures is acceptable for all 
components. However, because y2 is expected to be much smaller than both y1 
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5. Example Problem 
SUBROUTINE JEX (NEQ, T, Y, ML, MU, PD, NRPD) 
DOUBLE PRECISION PD, TI Y 
DIHENSION Y(3), PD(WRPD.3) 
PD(1.1) -.04DO 

RETURN 
END 

1. D4*Y 3 
1 .D4*Y 121 
.04DO 
-PD( l  , 3) 
6.D7*Y (2) 
-PD(l,Z) - 

Figure 5.3.-Listing of subroutine (JEX) that computes 
analytical Jacobian matrix for example problem. 

and p3, an array ATOL, with ATOL(2) much smaller than both ATOL(1) and 
ATOL(3), is used. For these choices of the RTOL and ATOL types, table 4.2 gives 
ITOL = 2. Pure relative error control cannot be used because the initial values of 
both y2 and p3 are zero and, as t -+ 00, p1 -+ 0 and p2 -+ 0. Pure absolute error 
control should not be used because of the widely varying orders of magnitude of 
the {y , } .  Note that because a scalar RTOL is used, the MAIN program does not 
require a DIMENSION statement for this variable. 

The remainder of the program calling LSODE is straightforward and self- 
explanatory. Because the output value for ISTATE is equal to 2 for a normal 
return from LSODE and no parameter (except TOUT) is reset between calls to 
LSODE, ISTATE does not have to be reset. 

5.3 Computed Results 

The output from the program, obtained on the Lawrence Livermore Laboratory’s 
CDC-7600 computer using single-precision arithmetic, is given in figure 5.4. In 
addition to the results at the specified times, values for the following parameters, 
which give a measure of the computational work required to solve the problem, 
are printed at the end: total number of integration steps (STEPS), total number of 
derivative evaluations (F-S), and total number of Jacobian matrix evaluations and 
LU-decompositions of the iteration matrix (J-S). 

AT T = 
AT T = 
AT T = 
AT T = 
AT T = 
AT T = 
AT T * 
AT T = 
AT T = 
AT T = 
AT T = 
AT T = 

4.0000E-01 
4.00OOE+OO 
4.00OOE+Ol 
4 .OOOOE+O2 
4.0000E+03 
4.0000E+04 
4.0000E+05 
4.0000E+06 
4.0000E+07 
4.0000E+08 
4.0000E+09 
4.0000E+10 

Y =  
Y =  
Y =  
Y =  
Y =  
Y =  
Y -  
Y -  
Y =  
Y =  
Y =  
Y =  

9.851726E-01 
9.055142E-01 
7.158050E-01 
4.504846E-01 
1.831701E-01 
3.897016E-02 
4.935213E-03 
5.159269E-04 
5.306413E-05 
5.494529E-06 
5.129458E-07 

-7.170592E-08 

3.386406E-05 

9.184616E-06 
3.222434E-06 
8.940379E-07 
1.621193E-07 
1.983756E-08 
2.064759E-09 
2.122677E-10 
2.197824E-11 
2.051784E-12 

-2.868236E-13 

2. 2 4 ~ i a ~ - 0 5  
1.479357E-02 
9.446344E-02 
2.841858E-01 
5.49512ZE-01 
8.168290E-01 
9.610297E-01 
9.950648E-01 
9.994841E-01 
9,999469E-01 
9.999945E-01 
9.999995E-01 
1.000000E+00 

NO. STEPS = 330 NO. F-S = 405 NO. J-S 69 

Figure 5 .4 .4utput  from program for example problem. 
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Chapter 6 
Code Availability 

The present version of LSODE, dated March 30, 1987, is available in single or 
double precision. The code has been successfully executed on the following 
computer systems: Lawrence Livermore Laboratory.3 CDC-7600, Cray- 1, and 
Cray-X/MP; NASA Lewis Research Center’s IBM 370/3033 using the TSS 
operating sytem (OS), Amdahl5870 using the W C M S  OS and the UTS OS, 
Cray-X/MP/2/4 using the COS and UNICOS operating sytems and the CFT and 
CFI77 compilers, Cray-Y/MP/8/6128 using UNICOS 6.0 and CFI77, Alliant 
FWS, Convex C220 minicomputer using the Convex 8.0 OS, and VAX 
11/750,11/780,11/785,6320,6520,8650,8800, and 9410; NASAAmes Research 
Center’s Cray-2 and Cray-Y/MP using the UNICOS operating system and the 
CFI77 compiler; the Sun SPARCstation 1 using the Sun 4.0 OS; the IBM RISC 
System/6000 using the AM 3.1 OS and the XLF and F77 compilers; several IRIS 
workstations using the IRM 4.0.1 OS and F77 compiler; and various personal 
computers under various systems. 

The LSODE package is one of five solvers included in the ODEPACK collection 
of software for ordinary differential equations (ref. 2). The official distribution 
center for ODEPACK is the Energy Science and Technology Software Center i t  
Oak Ridge, Tennessee. (ESTSC supersedes NESC, the National Energy Software 
Center at Argonne National Laboratory, in this activity.) Both single- and double- 
precision versions of the collection are available. Additional details regarding 
code availability and procurement can be obtained from 

Energy Science and Technology Software Center 
PO. Box 1020 
Oak Ridge, TN 3783 1-1020 
Telephone: (615) 576-2606 

The ODEPACK solvers can also be obtained through electronic mail by accessing 
the NETLIB collection of mathematical software (ref. 40). Both single- and 
double-precision versions of ODEPACK are contained in NETLIB. Detailed 
instructions on how to access and use NETLIB are given by Dongarra and Grosse 
(ref. 40). 
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